فصل اول
مقدمه‌ای بر مانیتورینگ سلامت سازه
 

1         مقدمه‌ای بر مانیتورینگ سلامت سازه

1-1       مقدمه

1-1-1     مفهوم مانیتورینگ سلامت سازه

با روی کار آمدن مواد هوشمند و مواد مرکب زمینه برای ظهور روشی جدید در تکنولوژی کشف آسیب فراهم گردید. روش‌های سنتی کشف آسیب بسیار زمان‌بر و پر هزینه بوده و از نظر ایمنی نیز عملکرد پایینی داشتند. امروزه تکنولوژی مانیتورینگ سلامت با بهره‌گیری از روش‌های ارزیابی و تست‌های غیر‌مخرب و شبکه حسگری قوی بهترین سیستم کشف آسیب در سازه‌های، عمرانی، هوایی، دریایی، صنایع نفت و گاز و… می‌باشد. مانیتورینگ سلامت سازه‌ها، سیستم نظارت و مانیتورینگ خودکاری می باشد که هدف آن کشف عیب‌های سازه‌ای در طول عمر یک سازه می‌باشد و این امر بوسیله بهره گیری از شبکه‌های حسگری سراسری انجام می گردد [54,61]. در این بخش توضیحاتی در مورد انگیزه ایجاد مانیتورینگ، مقدمات بهره گیری از آن، انواع حسگر و تکنیک‌های مانیتورینگ سلامت ارائه شده و در فصل‌های آتی این توضیحات کامل‌تر می شوند.
تکنولوژی [1]SHM، مانیتورینگ خودکار و کنترل شرایط فیزیکی سازه می‌باشد که بوسیله آن در طی فرآیند تعمیر و نگه‌داری, هزینه و زمان از کار افتادگی هواپیما(زمین گیر شدن) بطور گسترده کاهش یافته و سبب کمینه سازی خطای انسانی می گردد [4,14,48,60]. SHM روش نوینی برای صنعت تعمیر و نگه‌داری خلق کرده می باشد. مانیتورینگ سلامت، تعمیر و نگه‌داری بر اساس شرایط[2] که به شرایط حقیقی اجزای هواپیما وابسته می باشد را توصیه کرده می باشد که نسبت به روش سنتی رایج یعنی تعمیر و نگه‌داری بر اساس زمان[3] که به تعداد ساعات پروازی اجزای هواپیما[4] وابسته بوده مزیت‌های فراوان‌تری دارد(در بخش‌های آتی بطور مفصل تبیین داده می شوند). [60]
از دیگر فواید این تکنولوژی، توانایی بهینه‌سازی طراحی سازه، بوسیله تعبیه سیستم SHM در مرحله طراحی و ساخت می‌باشد. تعبیه این سیستم در مرحله طراحی و ساخت سبب کاهش نیاز به طراحی بیشینه سازه‌های کامپوزیتی(بهینه‌سازی و لوپ زدن)، می گردد [4,48,53,60]. اهداف اصلی طراحان و مهندسان سازه بویژه در صنایع هوایی افزایش ایمنی، عملکرد و کاهش وزن سازه و هزینه‌ها(هزینه‌های عملیاتی) می‌باشد که اجرای کامل و سراسری سیستم مانیتورینگ، کلیه این اهداف را ارضا می کند.
در این فصل آغاز به مطالعه مفاهیم پایه‌ای مانیتورینگ سلامت سازه‌ پرداخته شده و پس از مطالعه انواع آسیب‌های سازه‌ای, الگوریتم روش مانیتورینگ سلامت شناسایی می گردد. در ادامه با ارائه ساختارهای سنتی صنعت تعمیر و نگه‌داری سازه‌ای به مطالعه صرفه‌جویی در زمان و هزینه تعمیر و نگه‌داری پرداخته شده و تغییرات اساسی ایجاد شده بوسیله سیستم‌های SHM در صنعت تعمیر و نگه‌داری هوایی مورد مطالعه قرار می‌گیرند. در نهایت مکانیزم عملکرد انواع تکنیک‌ها و حسگرهای بکار رفته در سیستم مانیتورینگ تشریح شده و ویژگی و یا معایب هرکدام نسبت به تکنیک‌ها یا حسگرهای دیگر شناسایی می شوند.

1-1-2     مقدمه‌ای بر مانیتورینگ سلامت سازه

هدف از مانیتورینگ سلامت سازه، عیب‌یابی در هر لحظه از طول عمر سازه می‌باشد. عیب‌های ناشی از استهلاک، عوامل محیطی، چگونگی بهره گیری، و رویدادهای تصادفی و عمر سازه(عیب‌های ناشی از پیری سازه) و… توسط این سیستم شناسایی می شوند. همچنین این سیستم می‌تواند سیر رشد آسیب و عمر باقیمانده ناحیه آسیب دیده و کل سازه را پیش‌بینی کند. با این توضیحات واضح می باشد که این روش یک روش جدید، بهبود یافته و کالیبره شده از روش ارزیابی غیر‌مخرب[5] می‌باشد. تلفیق حسگرها و بهره گیری از مواد هوشمند، توانایی بالای انتقال و پردازش داده و قدرت محاسباتی بالا, زمینه ایجاد یک ساختار نظارتی(مانیتورینگ) کامل را فراهم نموده می باشد. چگونگی عملکرد این سیستم بعد از تشخیص آسیب بطور شماتیک در شکل(1-1) ارائه شده می باشد.

تشخیص آسیب
ثبت زمان
تعیین محل
تعیین شدت
هشدار(آلارم)
اعمال فعالیت در صورت
قطع مانیتورینگ
تعیین طول عمر باقیمانده
(جلوگیری از بارگذاری اضافه)
تشخیص نوع تعمیر
(تعمیر خودکار)


 
 
 
 
 
 
 
 
 
 
 
 
 
شکل ‏1‑1: تشکیلات سیستم مانیتورینگ سلامت سازه. [69]
در شکل(1-1) ساختار سیستم SHM به تصویر کشیده گردید(بخش(1-2-3)). این سیستم مربوط به تابع مانیتورینگ سراسری سازه[6] می‌باشد. انواع پدیده‌های فیزیکی در بحث مانیتورینگ بایستی مطالعه شوند در ذیل ارائه شده‌اند.
الف) نوع پدیده فیزیکی مربوط به آسیب که توسط حسگرها مانیتوره شده می باشد.
ب) نوع پدیده فیزیکی که بوسیله حسگرها برای تولید، دریافت، ارسال و ذخیره‌سازی سیگنال(معمولا الکتریکی) در زیر سیستم‌ها بهره گیری می گردد. چند نوع حسگر مشابه که داده‌ها را همزمان برای یک سیستم ارسال می‌کنند، یک شبکه حسگری[7] را تشکیل داده که در نهایت داده‌های آنها با دیگر حسگرها ادغام شده و حسگرهای دیگر نیز با بهره گیری از سیستم مانیتورینگ وظیفه نظارت بر شرایط محیطی را انجام می‌دهند. سیگنال‌های تحویل داده شده بوسیله زیر سیستم یکپارچه مانیتورینگ ثبت شده و توسط کنترلر بهره گیری می شوند. در نهایت کلیه این عوامل منجر به ایجاد یک سیستم تشخیص عیب کامل سازه‌ای می شوند. [6,14,15]

1-2       آشنایی با انواع آسیب‌

هدف اصلی این پروژه ارائه روش‌هایی جدید برای کشف آسیب‌های سازه‌ای می‌باشد. در آغاز مفاهیم پایه‌ای آسیب ارائه می گردد.

1-2-1     مفاهیم پایه‌ای آسیب

نزدیک به سه دهه می باشد که کوشش‌های فراوانی برای کشف آسیب صورت گرفته می باشد. در ده سال گذشته با ورود سیستم‌های مانیتورینگ سلامت سازه‌ای رشد چشمگیری در تکنولوژی کشف آسیب صورت گرفته می باشد. تاکنون تعریف‌های گوناگونی از آسیب ارائه شده می باشد. در این جا کوشش بر این می باشد که ساده‌ترین و جامع‌ترین تعریف آسیب ارائه گردد. آسیب تغییر در خواص هندسی یا خواص ماده شامل تغییر در شرایط مرزی، اتصالات و… می‌باشد که تاثیر نامطلوبی بر عملکرد سازه می‌گذارد. به اظهار دیگر آسیب، تغییر در عملکرد مطلوب سازه می‌باشد. مفهوم آسیب زمانی که با شرایط حالت سالم(بدون آسیب) مقایسه گردد، معنا پیدا می کند. بدلیل اینکه این پروژه بر روی آسیب‌های مکانیکی و سازه‌ای تمرکز دارد، آسیب به تغییر در خواص هندسی و خواص ماده محدود می گردد.[15]
شروع همه آسیب‌ها از سطح ماده می باشد. البته ذکر این نکته ضروری می باشد که آسیب لزوما به معنای از دست رفتن عملکرد کل سیستم نمی‌باشد اما اگر آسیب در مراحل اولیه کشف نشود، عملکرد کل سیستم کوتاه شده و در نهایت سیستم بین می‌رود(شکست کل سازه). امروزه کوشش پیشرفته‌ترین تکنولوژی‌های کشف آسیب این می باشد که آسیب را در همان مراحل اولیه شناسایی کنند. در ادامه انواع آسیب و علت های بروز آنها تبیین داده می گردد.

1-2-2     عوامل وقوع آسیب در صنایع هوافضا و عمران

  1. خوردگی[8]: بیشتر در سازه‌های فلزی و بتنی رخ می‌دهد.
  2. ارتعاشات: در سازه بال هواپیما و پل‌ها.
  3. ضربه: این آسیب در سازه‌های کامپوزیتی چشمگیر می باشد.
  4. فرود دشوار[9]: در سازه‌های هوایی رایج می باشد.
  5. بارگذاری بیش از حد[10]: بیشتر در سازه‌های هوایی، عمرانی و دریایی رایج می باشد.
  6. تصادف[11].
  7. سقوط[12].
  8. تورق[13]: در سازه‌های کامپوزیتی رواج دارد.

1-2-3     طبقه‌بندی آسیب‌های سازه‌ای

  1. کلاس1: آسیب‌هایی ناچیز[14]: آسیب سطحی و ناچیز بوده تا حدی که می‌توان از آن صرفنظر نمود. آسیب‌هایی مانند فرورفتگی[15] روی سطح خارجی سازه هواپیما همانند این می‌باشند. این نوع آسیب‌ها اگر در هواپیما رخ دهند، هواپیما می‌تواند به پرواز خود ادامه دهد(اصطلاحا نیاز نیست هواپیما گراند گردد).
  2. کلاس2: آسیب‌های قابل تعمیر[16]: این نوع آسیب‌ها در انواع سازه‌ رایج بوده و در صورتی‌که به سرعت کشف شوند، مشکل ساز نبوده اما اگر به آنها بی توجهی گردد، پییشرفت کرده و سبب از کار افتادن آن ناحیه(قطعه) می شوند. آسیب‌هایی از قبیل سوراخ[17] و ترک[18] از این قبیل می‌باشند. در صورت بروز این آسیبها در صنایع هوایی از پرواز هواپیما جلوگیری شده(اصطلاحا هواپیما گراند می گردد) و بعد از رفع آسیب و تایید واحد کنترل کیفیت[19] هواپیما صلاحیت پرواز را پیدا می کند.
  3. کلاس3: تعویض: قطعه آسیب دیده از رده خارج می باشد[20] و قابل تعمیر نبوده و بایستی تعویض گردد.

انواع آسیب سازه‌ای:

  • خوردگی.
  • ترک.
  • تورق.
  • حفره.
  • سوراخ.
  • ناپیوستگی اتصالات[21].
  • انحراف از موقعیت.
  • شل شدگی یا تزلزل اتصالات.
  • خروج از مرکزیت.
  • تغییر خواص ماده.

سیستم مانیتورینگ سلامت سازه توانایی کشف آسیب در مراحل اولیه و جلوگیری از رشد آسیب(جلوگیری از بارگذاری اضافی در ناحیه آسیب دیده)، ترمیم خودکار آسیب(با بهره گیری از مواد و حسگرهای هوشمند)، جلوگیری از تجمع آسیب و نمایان کردن عمر باقیمانده ناحیه یا قطعه آسیب دیده را دارد(شکل(1-1)).[14]

1-2-4     الگوریتم‌ کشف آسیب توسط سیستم مانتیتورینگ سلامت

  1. تشخیص آسیب.
  2. ثبت زمان وقوع آسیب.
  3. تعیین محل آسیب.
  4. تعیین شدت آسیب(مطالعه کیفیت آسیب).
  5. اعمال اجرایی(نظیر نوع هشدار).
  6. تعیین طول عمر باقیمانده قطعه آسیب دیده و کل سازه.
  7. تشخیص نوع تعمیر

شناسایی و تشخیص آسیب بوسیله تجمیع چهار مرحله زیر انجام می گردد.

  1. مانیتورینگ شرایط(CM)[22]: مشابه تکنولوژی مانیتورینگ سلامت سازه می باشد اما بیشتر در تعیین مکان آسیب بهره گیری می گردد.
  2. روش ارزیابی غیر‌مخرب(NDE)[23]: بعد از اینکه آسیب وارد گردید بصورت خارج از شبکه[24] و موضعی انجام می گردد و از آن برای تعیین خسارت نیز بهره گیری می گردد.[52]
  3. کنترل فرآیند آماری(SPC)[25]: متشکل از شبکه حسگری بوده که برای مانیتوره کردن تغییرات فرآیند بهره گیری می گردد.
  4. پیش‌بینی آسیب(DP)[26]: برای پیش‌بینی عمر مفید باقیمانده آسیب بهره گیری شده و به سه فاکتور قبل نیز وابسته می‌باشد[48].

سیستم‌های مانیتورینگ دو نوع تکنیک بازرسی سراسری و محلی(در فصل بعد بطور کامل توصیف می شوند) را پیشنهاد می‌کنند. تکنیک‌های سراسری برای بازرسی‌ها و مناطق نسبتا بزرگ و بحرانی بوده و با هدف مکان‌یابی آسیب مورد بهره گیری قرار می‌گیرند.[57]
اپراتورهای هوایی می‌خواهند حداقل عملکردی مشابه سیستم‌های رایج و حتی بهتر از آن‌ها داشته باشند. تکنیک‌های بازرسی محلی با هدف کشف آسیب‌های ویژه به گونه طبیعی بر روی روش‌های جهانی بازرسی تمرکز کرده‌اند.
تکنیک‌های دینامیکی بمنظور اینکه از انتشار آسیب در صورت وقوع آن جلوگیری کنند، بایستی بطور مداوم فعال باشند. اپراتورهای هوایی فقط سیستم‌هایی از مانیتورینگ سلامت را که حجم کار و زمان تعمیر و نگه‌داری را افزایش نمی‌دهند، اختیار می‌کنند[65].

1-3       مقدمه ای بر مواد مرکب

1-3-1     مقدمه

در این بخش توضیحات مختصری درباب تکنولوژی مواد مرکب ارائه می گردد. مواد مرکب بیانگر ترکیب حداقل دو ماده متفاوت در مقیاس ماکروسکوپی جهت حصول ماده جدید می‌باشند. با ظهور مواد مرکب, توسعه چشمگیری در صنایع هوایی، دریایی، عمرانی، پزشکی و… ایجاد شده می باشد، بگونه‌ای که امروزه در بیشتر علوم مهندسی و پزشکی کاربرد فراوانی دارند[70].
رفتار مکانیکی مواد مرکب: مواد مرکب معمولا ناهمگن بوده و از طرف دیگر خصوصیات آنها ایزوتروپ نیز نمی‌باشد، به بیانی دیگر ارتوتروپ و یا در حالت کلی انیزوتروپ می‌باشند.

این مطلب رو هم توصیه می کنم بخونین:   بهسازی لرزه ای پایه پل های بتن آرمه با FRP پایان نامه عمران گرایش سازه

1-3-2     سازه‌های کامپوزیتی

کوشش برای بدست مواد ممتاز، فرآیندهای ابتکاری و اصلاح ایمنی از مهمترین اهداف همه سازنده‌های هواپیما و سازه‌های عمرانی می‌باشد. هدف نهایی ارضا کردن نیازهای مشتری(خطوط هوایی و کاربران نهایی)، کمینه‌سازی هزینه‌ها و افزایش ایمنی در طول عمر سازه می‌باشد[60,70]. همچنین کامپوزیت‌ها اشکالات ذاتی نظیر آسیب‌پذیری ناشی از ضربه، تورق و دسترسی مشکل به اجزاء آن در طی عملیات تعمیر و نگه‌داری دارند. [14,60]
ایرباس A380 نمونه بارزی از تمرکز این صنعت بر بهره گیری از تکنولوژی مواد مرکب و سیستم‌های جدید و می‌باشد. نوآوری در افزایش بهره گیری از الیاف کربن تقویت شده با پلاستیک‌ها(CFRP[27]) در ساخت سازه‌های اصلی و اولیه برای بخش پرفشار باکهلد و مرکز جعبه بال و بهره گیری از الیاف لایه‌های آلومینیوم شیشه(GLARE) در بدنه تحت فشار, گوشه‌های از آن می‌باشد[2,51,67]. ایرباس380(A380F) با بهره‌گیری از مواد کامپوزیت 50 درصد بار بیشتر(نسبت به خانواده مشابه ایرباس) را جابجا می کند و مصرف سوخت بر تن آن نسبت به نزدیکترین رقیب خود، 18درصد کمتر می‌باشد(بیش از 25 درصد از سازه‌ایرباس380 از مواد کامپوزیت تشکیل شده می باشد). [1,52]
B787 نیز از بهترین نمونه‌های هواپیماهای تجاری می‌باشد که بیش از 50 درصد سازه آن از کامپوزیت تشکیل شده می باشد. سازه اولیه شامل بدنه و بال آن نیز از مواد کامپوزیت ساخته شده می باشد(شکل(1-2)) [7]. نتایج بهره گیری از مواد مرکب در این هواپیما، صرفه‌جویی در وزن، عملکرد ممتاز و صرفه‌جویی در زمان و هزینه تعمیر و نگه‌داری می‌باشد. سازندگان این وسیله تخمین زده‌اند که در طی تنها 8 سال اول عمر هواپیما نزدیک به 8 میلیون دلار صرفه‌جویی گردد.[7]
شکل ‏1‑2:مواد مورد بهره گیری در ساخت بوئینگ 787.[7]
 
دستیابی به عملکرد بالاتر، تولید ارزان‌تر، عمر طولانی‌تر و هواپیمایی مساعد با محیط، چالش بزرگی می‌باشد، که صنعت برای روبرویی با آن و بهره‌گیری از مواد کامپوزیتی پیشرفته و فرآیندهای ساخت ابتکاری ذاتی این راه را انتخاب کرده می باشد. به هرحال بایستی متقاعد گردید که صرفه‌جویی در هزینه‌، وزن، زمان و تعمیر و نگه‌داری ناشی از مواد کامپوزیتی، هزینه‌های ایمنی و یکپارچه‌سازی حسگرها را جبران می کند. آسیب وارده اغلب در لایه‌های کامپوزیتی واقع شده که تکنیک‌های غیر‌مخرب برای کشف آسیب نیازهای متفاوت و پیچیده‌ای دارند. افزایش بهره گیری از مواد مرکب در سازه‌های اصلی هواپیماها منجر به تعبیه سیستم‌های SHM به جای بهره گیری از روش‌های سنتی تست‌های غیر‌مخرب در طی زمان‌های تعمیر و نگه‌داری شده می باشد.[65]
[1] Structural Health Monitoring
[2] Condition Based Maintenance
[3] Time Based Maintenance
 
[4] بعد از سپری شدن تعداد ساعات پروازی هر بخشی که توسط سازنده معین می گردد, نیاز به تعمیر یا تعویض پیدا می کند. کلیه کارها توسط سازنده مشخص شده می باشد.
[5] NDE: Nondestructive Evaluation.
[6] Structural Integrity Monitoring
[7] Sensor Network
[8] Corrosion
[9] Hard Landing
[10] Excessive Load
[11] Collision
[12] Crash
[13]ِ Delaminate
[14] Negligible
[15] Dent
[16] Repairable
[17] Hole
[18] Crack
[19] QC: Qualification Control
[20] Scrap
[21]Debonding
[22] Condition Monitoring
[23] Non Destructure Evaluation
[24] Offline
[25] Statistical Process Control
[26] Damage Prognosis
[27] Carbon Fiber Reinforced Plastic
فهرست مطالب
1   مقدمه‌ای بر مانیتورینگ سلامت سازه 1
1-1   مقدمه 1
1-1-1    مفهوم مانیتورینگ سلامت سازه 1
1-1-2    مقدمه‌ای بر مانیتورینگ سلامت سازه 2
1-2   آشنایی با انواع آسیب‌ 4
1-2-1    مفاهیم پایه‌ای آسیب 4
1-2-2    عوامل وقوع آسیب در صنایع هوافضا و  عمران 5
1-2-3    طبقه‌بندی آسیب‌های  سازه‌ای 5
1-2-4    الگوریتم‌ کشف آسیب توسط سیستم مانتیتورینگ سلامت 7
1-3   مقدمه ای بر مواد مرکب 8
1-3-1    مقدمه 8
1-3-2    سازه‌های کامپوزیتی 8
1-4   انگیزه ایجاد مانیتورینگ سلامت سازه 10
1-4-1    ساختار سنتی تعمیر و نگه‌داری 11
1-4-2    تغییرات موثر در ساختار تعمیر و نگه‌داری 12
1-5   مانیتورینگ سلامت سازه‌ها و الهام از محیط زیست 14
1-6   مانیتورینگ سلامت سازه‌ها روشی برای ساخت مواد و سازه‌های هوشمند 17
1-6-1    مقدمه 17
1-7   تست‌های غیر‌مخرب 18
1-7-1    مقدمه 18
1-7-2    تکنیک‌های SHM ،NDE 20
1-8   تکنیک‌های مانیتورینگ سلامت سازه 21
1-8-1    انواع تکنیک‌های موجود 21
1-9   حسگرهای رایج در مانیتورینگ سلامت سازه‌ 23
1-9-1    مقدمه 23
1-9-2    تنوع حسگرها SHM بر اساس نوع سازه 24
1-9-3    انواع حسگرهای مانیتورینگ سلامت سازه‌ها 25
1-9-4    مانیتورینگ خلا نسبی 26
1-10   مدیریت سلامت 27
1-10-1   نیازمندی‌های کاربران نهایی 28
1-11   نتیجه‌گیری و جمع‌بندی 28
2   عملکرد مانیتورینگ سلامت سازه 30
2-1   مفاهیم پایه‌ای، نیازها و فواید 30
2-1-1    مقدمه 30
2-1-2    مفاهیم پایه ای 31
2-1-3    فواید و نیازهای مانیتورینگ 33
2-1-4    مانیتورینگ همیشگی طول عمر 34
2-2   فرآیندهای مانیتورینگ سلامت سازه 35
2-2-1    عملیات مرکزی 35
2-3   نتیجه‌گیری و جمع‌بندی 39
3   حسگرهای فیبرنوری 40
3-1   مقدمه‌ای بر حسگرهای فیبرنوری 40
3-2   تکنولوژی حس فیبرنوری 43
3-2-1    حسگرهای تداخل‌سنج SOFO 44
3-2-2    حسگرهای تداخل‌سنجی فابری پروت 46
3-2-3    حسگرهای FBG 48
3-2-4    حسگرهای پراکندگی رامان و بریلویین توزیع شده 48
3-3   بسته‌بندی حسگر 50
3-4   کابل‌های سیستم حس توزیع شده 54
3-4-1    مقدمه 54
3-4-2    کابل حس درجه‌حرارت 55
3-4-3     نوار حس کرنش اسمارتیپ 56
3-4-4    حس درجه‌حرارت و کرنش ترکیب شده: پروفایل هوشمند 58
3-5   نتیجه‌گیری و جمع‌بندی 58
4   حسگرهای تغییرشکل فیبرنوری, تفسیر و اندازه‌گیری 60
4-1   مولفه‌های کرنش و تکامل زمانی کرنش 60
4-1-1    مفاهیم پایه ای 60
4-1-2    کرنش سازه‌ای 64
4-1-3    کرنش حرارتی 67
4-1-4    خزش 68
4-1-5    افت حجمی 70
4-1-6    زمان و اندازه‌گیری مرجع 71
4-2   اندازه‌گیری و طول گیج حسگر 72
4-2-1    مقدمه 72
4-2-2    حسگر اندازه‌گیری تغییر شکل 73
4-2-3    مانیتورینگ سازه‌ای یکپارچه: مفاهیم پایه‌ای 75
4-2-4    حسگرهای اندازه‌گیری در مواد همگن, حداکثر طول گیج 77
4-2-5    حسگر اندازه‌گیری در مواد ناهمگن: حداقل طول گیج 92
4-2-6    معیار تعیین طول گیج حسگر 97
4-2-7    ارزیابی و اعتبارسنجی معیار تعیین طول گیج 99
4-3   تفسیر اندازه‌گیری کرنش 100
4-3-1    مقدمه 100
4-3-2    منابع خطا و کشف شرایط غیر معمول سازه‌ای 101
4-3-3    تعیین مولفه‌های کرنش و تنش برای اندازه‌گیری کرنش کل 106
4-4   نتیجه‌گیری و جمع‌بندی 111
5   نتیجه‌گیری و جمع‌بندی 114
5-1   نتیجه‌گیری 114
5-2   دستآوردها 116
5-3   پیشنهاداتی برای پروژه‌های آتی 116
فهرست مراجع………………………………………………………………………………………………….117
 
 
فهرست شکل‌ها
شکل ‏1‑1: تشکیلات سیستم مانیتورینگ سلامت سازه. 3
شکل ‏1‑2:مواد مورد بهره گیری در ساخت بوئینگ 787. 10
شکل ‏1‑3: مزایای سیستم SHM برای کاربران نهایی. 13
شکل ‏1‑4:طرح شماتیکی از پوست بشر که نمایانگر تنوع حسگرها و عملگرها و سازه کاملا هوشمند آن می‌باشد 16
شکل ‏1‑5: مقایسه بین سیستم عصبی بشر و ساختار SHM. 16
شکل ‏1‑6 : سیر تکامل مواد.. 17
شکل ‏1‑7:  اجزای اصلی سیستم SHM. 20
شکل ‏1‑8: انواع حسگرهای مورد بهره گیری سیستم مانیتورینگ: مقایسه بین مهندسی هوافضا و مهندسی عمران 24
شکل ‏1‑9: حسگرهای مورد بهره گیری در ایرباس320. 26
شکل ‏1‑10: حسگرهای سطح CVM. 26
شکل ‏1‑11: سیستم مدیریت سلامت سازه هواپیما. 28
شکل ‏2‑1: مقایسه بین فرآیند مانیتورینگ و سیستم رفع عیب بدن بشر. 33
شکل ‏2‑2: روش‌های جمع‌آوری داده. 38
شکل ‏2‑3: روش‌های نگه‌داری داده و دستیابی به داده. 39
شکل ‏3‑1: طبقه‌بندی تکنولوژی‌های حس فیبرنوری. 44
شکل ‏3‑2: ستاپ سیستم حسگر تداخل‌سنج SOFO. 45
شکل ‏3‑3: واحد قرائت SOFO پرتابل و نصب پایدار. 46
شکل ‏3‑4: قواعد اصلی حسگرهای فابری پروت. 47
شکل ‏3‑5: تفکیک کننده برای تداخل های فابری پروت برای کانال‌های چندتایی و گره ها. 47
شکل ‏3‑6: حسگرهای چندگانه FBG. 48
شکل ‏3‑7: مولفه‌های پراکندگی نوری در فیبرهای نوری. 50
شکل ‏3‑8: بسته‌بندی حسگر برای نصب در محفظه بوسیله اتصال جوش. 51
شکل ‏3‑9: نمونه‌ای از مقطع عرضی نوار هوشمند. 52
شکل ‏3‑10: تداخل‌سنج SOFO. 53
شکل ‏3‑11: حسگر درجه‌حرارت FBG. 53
شکل ‏3‑12:شتاب‌سنج‌ تک محوره فیبرنوری در ترکیب با  FBG. 54
شکل ‏3‑13: حسگرهایی برای کرنش، فشار و درجه‌حرارت. 54
شکل ‏3‑14: طراحی کابل حس درجه‌حرارت نامتناهی  و متناهی. 56
شکل ‏3‑15: تصویر برش عرضی نوار حس هوشمند. 57
شکل ‏3‑16: مقطع عرضی پروفایل هوشمند و ساده 57
شکل ‏4‑1:مفهوم کرنش متوسط در جسم تغییرشکل یافته. 61
شکل ‏4‑2: مفهوم کرنش برشی متوسط در شکل تغییرشکل یافته. 62
شکل ‏4‑3: روابط تنش کرنش ترم کوتاه بین مواد الاستیک پلاستیک .الف)خطی.ب)غیرخطی. 64
شکل ‏4‑4: توزیع کرنش در سطح مقطع تیر. 65
شکل ‏4‑5: نمایش رایج‌ترین بارگذاری، متناظر با توزیع نیروهای عمودی 67
شکل ‏4‑6: شماتیکی از حسگر گیج بلند نصب شده در ماده 73
شکل ‏4‑7: مقایسه حسگرهای گیج کوتاه و بلند در المان بتن. 76
شکل ‏4‑8: مقایسه توزیع کرنش حقیقی و کرنش میانگین اندازه‌گیری شده بوسیله حسگر گیج بلند در حالت کلی 79
شکل ‏4‑9: مقایسه توزیع کرنش حقیقی و کرنش میانگین اندازه‌گیری شده بوسیله حسگر گیج بلند در حالت توزیع خطی یا ثابت کرنش 80
شکل ‏4‑10: مقایسه توزیع کرنش حقیقی و کرنش میانگین اندازه‌گیری شده بوسیله حسگر گیج بلند در حالت کلی توزیع شکسته خطی کرنش 84
شکل ‏4‑11: مقایسه توزیع کرنش حقیقی و کرنش میانگین اندازه‌گیری شده بوسیله حسگر گیج بلند در حالت کلی توزیع سهموی کرنش 87
شکل ‏4‑12: واکاوی خطای اندازه‌گیری در توزیع ناپیوسته کرنش و وجود انحراف در طول گیج حسگر 90
شکل ‏4‑13: موقعیت حسگرها در المان تحت کشش بتن آرمه‌ای 94
شکل ‏4‑14: معیار تعیین طول گیج حسگرهای فیبرنوری بر اساس نوع ماده سازنده و استراتژی مانیتورینگ 98
 


 
فهرست جدول‌ها
جدول ‏1‑1: تخمین زمان ذخیره شده در بازرسی هواپیماهای جنگنده مجهز به سیستم SHM. 14
جدول ‏1‑2: فعالیت‌های مشترک علم پزشکی و SHM. 15
جدول ‏2‑1:پارامترهایی که بارها و بارها مانیتوره می شوند . 32
جدول ‏4‑1: منابع مهم کرنش بر اساس مواد سازنده متفاوت. 63
 
(ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل می باشد)
تعداد صفحه :92

قیمت : 14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

دسته‌ها: عمران