گرایش مهندسی خاک و پی

ارائه‏ ی یک روش تحلیلی جدید برای تعیین رفتار پی‏های سطحی مستقر بر خاک مسلح

استاد راهنما

جناب آقای دکتر محمود قضاوی

زمستان 1393

تکه هایی از متن به عنوان نمونه :
چکیده
در این پایان‏نامه به مقصود تحلیل رفتار پی‏های سطحی مستقر بر خاک مسلح از یک روش ساده‏ی فیزیکی مبتنی بر مقاومت مصالح به نام «روش مخروط» بهره گیری شده می باشد که در واقع به عنوان جایگزینی برای روش‏های حل دقیق که مبتنی بر تئوری الاستودینامیک سه‏بعدی هستند، به‏کار می‏رود. روش مخروط توانایی ترکیب پیچیدگی شرایط خاک‏های لایه‏ای و مطالعه چگونگی انتشار امواج در این محیط‏ها را دارا می‏باشد و از دقت مهندسی قابل قبولی برخوردار می باشد.
به مقصود مدل‏سازی خاک مسلح با ژئوسل با بهره گیری از روش مخروط، هر لایه ژئوسل و خاک پرکننده‏ی آن، با بهره گیری از یک مدل تجربی مرکب مبتنی بر تئوری تنش حلقه مدل‏سازی گردید. در این مدل مرکب، خصوصیات ژئوسل و خاک پر‏کننده‏ی آن در نظر گرفته گردید و لایه‏ی ژئوسل به صورت یک لایه‏ی همگن مدل‏سازی گردید. همچنین تاثیر چند پارامتر روی سختی دینامیکی پی سطحی واقع بر خاک مسلح مطالعه گردید، از قبیل: خصوصیات هندسی ژئوسل، تعداد لایه‏های آن، تراکم خاک پر‎کننده‏ و همچنین عمق قرارگیری لایه‏ی ژئوسل. متعاقبا ضرایب مربوط به سختی دینامیکی برای درجه‏ی آزادی قائم به ازای هر یک به دست آمد. به گونه کلی هر چه بالشتک ژئوسل دارای دیواره‏ی بلند‏تر، حفرات کوچک‏تر و مدول سکانت بیش‏تر باشد نتایج بهتری را به دست می‏دهد. . با افزایش تعداد لایه‏های ژئوسل اندازه ضریب سختی فنر و ضریب میرایی و در نتیجه ضریب سختی دینامیکی افزایش می‏یابد. از طرفی هرچه عمق قرارگیری ژئوسل به سطح خاک نزدیک‏تر باشد سختی فنر بیش‏تر و ضریب میرایی کم‏تر خواهد گردید. به گونه کلی از بین این دو پارامتر‏ مربوط به سختی دینامیکی، تأثیر ضریب میرایی در مطالعه پی مستقر بر خاک مسلح پر‏رنگ‏تر و تعیین‏کننده‏تر بوده می باشد. زیرا که یکی از بارز‏ترین ویژگی‏های مصالح ژئوسنتتیکی در خاک، صرف نظر از سختی بیش‏تری که به خاک می‏دهد، درصد میرایی مصالح تشکیل دهنده آن می باشد.
کلیدواژه‏ها: روش فیزیکی، مدل مخروط، انتشار امواج، پی سطحی، خاک مسلح
فهرست مطالب
عنوان                                            صفحه
فهرست علائم و نشانه‌ها ث‌
فهرست شکل‌‌ها ح‌
فهرست نمودار‏ها………………………………………………………………………………………………………………………………………د
فهرست جدول‌‌ها ر‌
فصل 1-  کلیات و مقدمه 1
1-1- پیشگفتار 1
1-2- اظهار موضوع 2
1-3- ضرورت پژوهش 3
1-4- هدف پژوهش 4
1-5- قلمرو پژوهش 4
1-6- روش انجام پژوهش 5
1-7- ساختار پایان نامه 5
فصل 2-  مروری بر تاریخچه‏ی موضوع 7
2-1- مقدمه….. 7
2-2- مروری بر تاریخچه و مطالعات انجام شده در زمینه‏ی کاربرد ژئوسل 7
2-2-1-   سیستم‏‏های ژئوسل و کاربرد‏ها 7
2-2-2-   مطالعات انجام شده روی ژئوسل 8
2-2-3-   مطالعات انجام شده در زمینه‏ی اندرکنش غشا و پرکننده 16
2-3- مروری بر تاریخچه‏ی توسعه‏ی روش مخروط 19
2-4- اختصار و جمع‏بندی 25
فصل 3- معرفی مبانی مدل مخروط 27
3-1- مقدمه…… 27
3-2- فرضیات در مدل مخروط 27
3-3- تعیین سختی دینامیکی پی سطحی 29
3-3-1-   مدل تک مخروطی 30
3-3-2-   مدل دو مخروطی 30
3-3-3-   پی سطحی واقع بر محیط نیمه بی‏نهایت همگن 31
3-3-3-1-  مدل مخروط انتقالی 32
3-3-4-   اصلاحات مدل مخروط 36
3-3-4-1-  سرعت موج…………… 37
3-3-4-2-  جرم محبوس……………… 38
3-3-4-3-  ضرایب سختی دینامیکی 40
3-3-5-   در نظر گرفتن میرایی 42
3-3-6-   انعکاس و انکسار موج در ناپیوستگی مصالح در یک مخروط 43
3-3-6-1-  ضریب انعکاس………….. 43
3-3-7-   پی سطحی واقع بر لایه‏ی مستقر بر نیم‏فضای همگن 46
3-3-8-   پی سطحی واقع بر لایه‏ی مستقر بر بستر صلب 48
3-3-9-   پی سطحی واقع بر نیم فضای چندلایه 50
3-4- اختصار……… 51
فصل 4- تحلیل پی سطحی واقع بر خاک مسلح با بهره گیری از روش مخروط 52
4-1- مقدمه………… 52
4-2- ارائه‏ی روش تحلیل با بهره گیری از توده‏ی مخروطی 53
4-2-1-   دیسک مجازی واقع بر سطح مشترک 55
4-2-2-   تشکیل ماتریس سختی دینامیکی 56
4-2-2-1-  حرکت انتقالی………….. 57
4-2-3-   ارزیابی دقت روش مخروط 62
4-3- لایه‏ی مسلح‏کننده 64
4-3-1-   مصالح سازنده‏ی ژئوسل 65
4-4- مدل‏سازی لایه‏ی ژئوسل به‏صورت خاک معادل 66
4-4-1-   در نظر گرفتن میرایی مصالح ژئوسل در مدل‏سازی 68
4-5- طرح مسئله و ارزیابی آن 68
4-5-1-   حالت خاک غیرمسلح 68
4-5-2-   حالت خاک مسلح با یک لایه‏ ژئوسل 69
4-5-3-   مقایسه و ارزیابی 70
4-6- اختصار……. 72
فصل 5- مطالعات پارامتریک 74
5-1- مقدمه……. 74
5-2- تعیین عمق بهینه‏ی قرارگیری اولین لایه‏ی ژئوسل 75
5-3- مطالعه اثر ارتفاع ژئوسل 77
5-4- مطالعه اثر نسبت ابعادی ژئوسل 79
5-5- مطالعه اثر میرایی مصالح ژئوسل 81
5-6- مطالعه اثر سختی مصالح ژئوسل 83
5-7- مطالعه اثر تراکم خاک پر‏کننده 85
5-8- تعیین حد فاصل بهینه بین لایه‏های ژئوسل در خاک 87
5-9- مطالعه اثر افزایش تعداد لایه‏های ژئوسل 90
5-10- اختصار‏…….. 92
فصل 6- جمع‏بندی، نتیجه‏گیری و پیشنهادات 93
6-1- جمع‏بندی 93
6-2- نتیجه‏گیری 94
6-3- پیشنهادات برای کارهای آینده 95
فهرست مراجع 96
واژه‏نامه فارسی به انگلیسی 100
واژه‏نامه انگلیسی به فارسی 102
فهرست علائم و نشانه‌ها
عنوان                                    علامت اختصاری

z ارتفاع راس مخروط
h ارتفاع ژئوسل
deq اندازه‏ی معادل حفره‏ی ژئوسل
T پارامتر زمان رفت و برگشت موج در لایه
Ke پارامتر بدون بعد مدول
Tj,j(ω) تابع انتقال
u تغییرمکان
σ3 تنش افقی متوسط
Δσ3 تنش محصورکننده
EjF ثابت اکو
λ ثابت لامه
ΔM جرم محبوس افزوده
ρ جرم حجمی
H حد فاصل دو لایه‏ی ژئوسل در خاک
T(ω) دامنه‏ی لنگر پیچشی
M(ω) دامنه‏ی لنگر چرخشی
g دامنه‏ی موج انعکاسی
f دامنه‎‏ی موج برخوردی
V(ω) دامنه‏ی نیروی برشی
N(ω) دامنه‏ی نیروی قائم
J دوران
S سختی دینامیکی
Kr سختی معادل لایه‏ی ژئوسل
Eg سختی معادل لایه‏ی ژئوسل
CLa سرعت ظاهری لایسمر
Cs سرعت موج برشی
CL سرعت موج برگشتی
Cp سرعت موج فشاری
r شعاع پی سطحی
d ضخامت لایه‎ی خاک
k ضریب بدون بعد لایه
K ضریب استاتیکی فنر
α ضریب انعکاس
μ ضریب جرم محبوس
C ضریب میرایی
Z عمق خاک
U عمق مدفون بالاترین لایه‏ی ژئوسل
a فرکانس بدون بعد
ω فرکانس زاویه ای
d قطر اولیه معادل تک سلول ژئوسل
D قطر پی سطحی
εa کرنش محوری شکست
E مدول الاستیسیته‏ی خاک
G مدول برشی
Ec مدول مقید شده
M مدون سکانت ژئوسل
Ag مساحت حفره ژئوسل
A مساحت قاعده مخروط روی سطح مشترک
ΔMJ ممان اینرسی دورانی اضافه شده
I ممان اینرسی قطبی
ξ میرایی مصالح خاک
ν نسبت پواسون
Q(ω) نیروی خارجی
P نیروی قائم

فهرست شکل‌‌ها
عنوان                                            صفحه
شکل ‏1‑1: انتشار امواج در مخروط [2] 3
شکل ‏2‑1: سیستم ژئوسل ساخته شده از نوارهایی از ورق‏های پلیمری جوش شده به هم 8
شکل ‏2‑2: سیستم ژئوسل ساخته شده از ژئوگرید؛ الف) شکل نمونه‏ی ژئوسل.ب)اتصال ژئوگرید‏ها [7] 8
شکل ‏2‑3: تصویر شماتیک پیکربندی آزمایش توسط رئا و میشل [8] 9
شکل ‏2‑4: چگونگی‏ی قرارگیری صفحه‏ی بار در آزمایش‏های رئا و میشل [8] 9
شکل ‏2‑5: تصویر شماتیک مدل آزمایشگاهی مهایسکار و ماندال [10] 11
شکل ‏2‑6: تصویر شماتیک مدل آزمایشگاهی باتهرست و کرو برای تست مقاومت برشی بین لایه‏های مسلح [5] 11
شکل ‏2‑7: تصویر شماتیک مدل آزمایشگاهی کریشناسوامی و همکاران [12] 12
شکل ‏2‑8: الگو‏های بهره گیری شده در ساخت ژئوسل از ژئوگرید 12
شکل ‏2‑9: تصویر شماتیک چگونگی‏ی انجام آزمایش توسط دش و همکاران [13] 13
شکل ‏2‑10: تصویر شماتیک از مکانیزم شکست و نیرو‏های موثر بر شیب مسلح با ژئوسل [22] 15
شکل ‏2‑11: چگونگی‏ی انجام آزمایش‏های سه‏محوری روی ژئوسل توسط راجاگوپال و همکاران [27] 18
شکل‏2‑12: انتشار امواج برای دیسک مدفون در خاک لایه‏ای 22
شکل‏2‑13:پی متقارن محوری با شکل دلخواه. الف)پی‏کاملا مدفون درخاک‏لایه‏ای نیم‏فضا؛‏ب)پی ‏مدفون در خاک‏لایه‏ای‏بر بستر صلب [42] 22
شکل‏2‑14: تقسیم‏بندی ناحیه‏ی خاک بستر زیر دو پی مجاور هم [43] 23
شکل‏2‑15: کاربرد مدل مخروط در واکاوی لرزه‏ای هتل آزادی [44] 24
شکل ‏2‑16: تحلیل گروه شمع در خاک لایه‏ای توسط یزدانی [46] 25
شکل ‏3‑1: انتشار امواج در مخروط ناقص. الف) مخروط اولیه؛ ب) امواج انعکاس یافته و انکسار ‏یافته [28] 28
شکل ‏3‑2: مخروط یک‏طرفه 30
شکل ‏3‑3: مخروط دو‏طرفه [49] 31
شکل ‏3‑4: مخروط‏ها برای درجات آزادی مختلف [28] 32
شکل ‏3‑5: دیسک واقع بر سطح نیمه بی‏نهایت همگن. الف) مخروط ناقص نیمه بی‏نهایت برای حرکت قائم ب) مدل پارامتر متمرکز [28] 33
شکل ‏3‑6: مدل خاک-سازه به وسیله جرم متمرکز-فنر-میراگر [49] 35
شکل ‏3‑7: جرم محبوس ΔM برای درجه آزادی عمودی [42] 38
شکل ‏3‑8: مدل مخروط و مدل‏ گسسته برای پی واقع بر سطح نیم‏فضای همگن. الف) مخروط نیمه نامحدود ناقص؛ ب) مدل گسسته برای درجه آزادی انتقالی؛ پ) مدل گسسته برای درجه آزادی دورانی [28]. 39
شکل ‏3‑9: انتشار موج در مخروط‏ها. الف)موج برخوردی به سطح مشترک ؛ب)موج انکسار‏یافته؛پ) موج انعکاس‏یافته [48] 44
شکل ‏3‑10: پی واقع بر لایه‏ی خاک مستقر بر نیم‏فضای ویسکوالاستیک و انعکاس و انکسار امواج در فصل مشترک لایه‏ها 46
شکل ‏3‑11: انتشار موج در مخروط‏ها برای لایه‏ی مستقر بر بستر صلب [3] 48
شکل ‏3‑12: نمایش الگوی انکسار و انعکاس موج در مرز ناپیوستگی ها [28] 50
شکل ‏3‑13: دیسک واقع بر نیم‏فضای چندلایه. الف) تقسیم‏بندی با 20 لایه‏ی متکی بر نیم‏فضای همگن؛ ب) مدول برشی افزایشی با عمق به صورت خطی [28] 51
شکل ‏4‑1: لایه ی خاکی بین دو سطح مشترک به عنوان یک مخروط ناقص 53
شکل ‏4‑2: توده مخروطی متشکل از مخروط‏های ناقص برای یک محیط خاکی با لایه‏بندی افقی تحت بارگذاری قائم [48] 54
شکل ‏4‑3: مدل‏سازی نیم‏فضای زیرین. الف) مخروط ناقص تکی برای مدل سازی نیم فضای الاستیک؛ ب) دو نوع مخروط اولیه، موج های بالا رونده و موج های پایین رونده 55
شکل ‏4‑4: دیسک قرارگرفته در عمق یک نیم‏فضا [49] 55
شکل ‏4‑5: شرایط تقارن برای دیسک مجازی اصلی و تصویر آن در مدل مخروط دو سویه [49] 56
شکل ‏4‑6: الف) امواج پایین رونده؛ ب) امواج بالا رونده [48] 57
شکل ‏4‑7: دیسک های صلب و تصویر آنها در فضای کامل [48] 58
شکل ‏4‑8: دیسک واقع بر دو لایه‏ی قرار گرفته بر یک نیم‏فضای انعطاف‏پذیر [28] 62
شکل ‏4‑9: بستر خاکی مسلح نشده با ژئوسل 69
شکل ‏4‑10: بستر خاکی مسلح شده با ژئوسل 70
شکل ‏5‑1: هندسه و چگونگی قرارگیری ژئوسل در خاک ماسه‏ای واقع بر محیط نیمه‏ بی‏نهایت 74
شکل ‏5‑2: پی سطحی مستقر بر خاک مسلح با دو لایه‏ی ژئوسل 88
فهرست نمودار‌‌ها
عنوان                                            صفحه
نمودار ‏3‑1: ضریب سختی فنر دیسک واقع بر نیم‏فضای همگن برای درجه‏ی آزادی عمودی به ازای نسبت‏های پواسون مختلف 41
نمودار ‏3‑2: ضریب میرایی دیسک واقع بر نیم‏فضای همگن برای درجه‏ی آزادی عمودی به ازای نسبت‏های پواسون مختلف 42
نمودار ‏4‑1: ضریب سختی فنر دیسک واقع بر دو لایه‏ی مستقر بر نیم‏فضای انعطاف‏پذیر برای درجه آزادی عمودی 63
نمودار ‏4‑2: ضریب میرایی دیسک واقع بر دو لایه‏ی مستقر بر نیم‏فضای انعطاف‏پذیر برای درجه آزادی عمودی 63
نمودار ‏4‑3: ضرایب سختی دینامیکی دیسک واقع بر دو لایه‏ی مستقر بر نیم‏فضای انعطاف‏پذیر برای درجه آزادی عمودی 64
نمودار ‏4‑4 : مقایسه‏ی ضریب فنر به‏دست آمده از روش مخروط برای خاک غیر مسلح و خاک مسلح 71
نمودار ‏4‑5 : مقایسه‏ی ضریب میرایی به‏دست آمده از روش مخروط برای خاک غیر مسلح و خاک مسلح 71
نمودار ‏4‑6 : مقایسه‏ی بزرگی سختی دینامیکی به‏دست آمده از روش مخروط برای خاک غیر مسلح و خاک مسلح 72
نمودار ‏5‑1 : اثر عمق‏های مختلف قرار‏گیری لایه‏ی ژئوسل بر ضریب فنر 76
نمودار ‏5‑2 : اثر عمق‏های مختلف قرار‏گیری ژئوسل بر ضریب میرایی 76
نمودار ‏5‑3 : بزرگی سختی دینامیکی به‏ازای عمق‏های مختلف قرار‏گیری ژئوسل 77
نمودار ‏5‑4 : اثر ارتفاع ژئوسل بر ضریب فنر 78
نمودار ‏5‑5 : اثر ارتفاع ژئوسل بر ضریب میرایی 78
نمودار ‏5‑6 : اثر ارتفاع ژئوسل بر بزرگی سختی دینامیکی 79
نمودار ‏5‑7 : اثر اندازه‏‏ی حفرات ژئوسل بر ضریب فنر 80
نمودار ‏5‑8 : اثر اندازه‏‏ی حفرات ژئوسل بر ضریب میرایی 80
نمودار ‏5‑9 : اثر اندازه‏‏ی حفرات ژئوسل بر بزرگی سختی دینامیکی 81
نمودار ‏5‑10 : اثر درصد میرایی ژئوسل بر ضریب فنر 82
نمودار ‏5‑11 : اثر درصد میرایی ژئوسل بر ضریب میرایی 82
نمودار ‏5‑12 : اثر درصد میرایی ژئوسل بر بزرگی سختی دینامیکی 83
نمودار ‏5‑13 : اثر سختی مصالح ژئوسل بر ضریب فنر 84
نمودار ‏5‑14 : اثر سختی مصالح ژئوسل بر ضریب میرایی 84
نمودار ‏5‑15 : اثر سختی مصالح ژئوسل بر بزرگی سختی دینامیکی 85
نمودار ‏5‑16 : اثر تراکم خاک پرکننده بر ضریب فنر 86
نمودار ‏5‑17 : اثر تراکم خاک پرکننده بر ضریب میرایی 86
نمودار ‏5‑18 : اثر تراکم خاک پرکننده بر بزرگی سختی دینامیکی 87
نمودار ‏5‑19 : فاصله‏ی مناسب بین لایه‏های ژئوسل براساس بیش‏ترین مقدار ضریب فنر 88
نمودار ‏5‑20 : فاصله‏ی مناسب بین لایه‏های ژئوسل براساس بیش‏ترین مقدار ضریب میرایی 89
نمودار ‏5‑21 : فاصله‏ی مناسب بین لایه‏های ژئوسل براساس بیش‏ترین مقدار سختی دینامیکی 89
نمودار ‏5‑22 : اثر افزایش تعداد لایه‏های ژئوسل بر ضریب فنر 90
نمودار ‏5‑23 : اثر افزایش تعداد لایه‏های ژئوسل بر ضریب میرایی 91
نمودار ‏5‑24 : اثر افزایش تعداد لایه‏های ژئوسل بر بزرگی سختی دینامیکی 91
فهرست جدول‌‌ها
عنوان                                            صفحه
جدول ‏3‑1: ضرایب فنر، میراگر و جرم مدل مخروط و مدل گسسته برای یک پی سطحی 37
جدول ‏4‑1: خصوصیات ژئوگریدها 65
جدول ‏4‑2: مشخصات بستر خاکی زیر پی سطحی 69
جدول ‏4‑3: مشخصات مسلح‏کننده (ژئوسل) و خاک پرکننده‏ی آن 70
جدول ‏5‑1: جزئیات مدل‏سازی مربوط به تاثیر پارامترهای مختلف 75
جدول ‏5‑2: مشخصات مدل‏سازی جهت مطالعه اثر افزایش تعداد لایه‏های ژئوسل 90

این مطلب رو هم توصیه می کنم بخونین:   پایان نامه ارشد:توسعه مدلی مبتنی بر فناوری سنجش از دور (اپتیکی) به منظور برآورد خسارت ساختمانها در برابر زلزله

فصل 1-    کلیات و مقدمه

1-1-             پیشگفتار

روش‏های حل دقیق، علیرغم دقت قابل قبول آن‏ها، برای تمامی مدل‏ها کاربردی نیستند. بهره گیری از روش‏های حل دقیق و یا روش‏های عددی منجر به تحلیل‏های پرهزینه شده و در بعضی موردها نیازمند درک صحیح و عمیق از مسائل مرتبط می‏باشد که در اکثر مواقع با در نظر داشتن پیچیدگی‏های موجود امکان‏پذیر نیست. در صورتی که محیط خاکی غیر‏همگن و دارای لایه‏بندی مختلف با خصوصیات متفاوت باشد، تحلیل پیچیده و پرهزینه خواهد بود. در‏نظر‏گرفتن خاک غیر‏همگن به صورت خاک همگن و یا بهره گیری از خصوصیات میانگین برای خاک‏های لایه‏ای، ممکن می باشد حل غیر واقعی را نتیجه بدهد. موج‏های برشی و انبساطی به‏وسیله‏ی انتشار نیرو‏های موجود در هر یک از لایه‏های خاکی با دامنه‏های متفاوت ایجاد می‏گردند. انعکاس امواج در مرزهای مشترک در خاک‏های لایه‏ای و کاهش در دامنه برای موج انتقالی به سمت میدان دور پدیده‏ای می باشد که مسئله را پیچیده می‏کند. اثر‏ دادن این پدیده‏ها برای واکاوی رفتاری کامل انتشار موج در محیط‏های نامحدود[1]، در تحلیل دقیق بسیار سخت خواهد بود. به خاطر همین معضلات، این روش ها را فقط می‏توان در پروژه‏های مهم با شرایط بحرانی به‏کار برد. برای مسائلی که روزمره می‏باشند، می‏توان روش مدل‏سازی فیزیکی را برای مطالعه‏ی خاک بدون مرز بهره گیری نمود. از محاسن این روش، کاربرد ساده‏ی آن‏ها و ارائه‏ی دید فیزیکی قابل فهم از مسئله می‏باشد. روش مخروط یکی از روش‏های مدل‏سازی فیزیکی می باشد که ویژگی‏های برجسته را درنظر می‏گیرد و بر مبنای تجربه‏ی به‏دست آمده از تحلیل‏های دقیق استوار می باشد.
در بیش از 20 سال گذشته، مدل‏سازی بر‏اساس رویکرد مقاومت مصالح با بهره گیری از میله‏ها و تیر‏های مخروطی، که مخروط‏ها نامیده می‏شوند، تنها برای پی‎‏های سطحی مستقر بر نیم‏فضای همگن معرف خاک وجود داشت اما امروزه امکان مدل‏سازی بر مبنای همان فرضیات، برای موردها کاربردی پیچیده‏تر نیز فراهم شده می باشد. به عنوان مثال، تغییرات خصوصیات خاک با عمق قابل مدل‏سازی می باشد و ساختگاه می‏تواند دارای هر تعداد لایه افقی باشد.
در واقع این روش به دلیل کارآیی و انعطافی که جهت تغییر خصوصیات لایه‏های خاک به دست می‏دهد، امکان تحلیل خاکی با مسلح‏کننده های صفحه‏ای و سه‏بعدی را فراهم می‏کند. در این پژوهش روش مخروط به عنوان روشی ساده و فیزیکی جهت تحلیل پی سطحی مستقر بر خاک مسلح شده با ژئوسل[2] معرفی و توسعه داده شده می باشد. دلیل بهره گیری از ژئوسل به عنوان مسلح‏کننده داشتن ماهیت سه‏بعدی و خاصیت mattress بودن آن می باشد که سبب بهبود بیش‏تر ویژگی‏های بستر خاکی نسبت به سایر مسلح‏کننده‏ها می‏باشد.

1-2-             اظهار موضوع

به عنوان یک جایگزین برای روش حل دقیق، مدل های فیزیکی ساده را می‏توان برای ارزیابی اندرکنش خاک و سازه و تعیین ارتباط‏ی نیرو-تغییر مکان برای فونداسیون‏ها معرفی نمود.
برای مثال یک پی صلب بدون جرم با مشخصات معرفی شده در‏نظر‏گرفته می‏گردد. برای تعیین ارتباط‏ی نیرو-‏جابه‏جایی روش حل دقیق مدنظر می‏باشد. به‏ همین خاطر قسمتی از ناحیه خاک و قسمتی از نیم‏فضا به‏وسیله‏ی روش المان محدود مدل‏سازی می‏گردد. همچنین برای ارائه‏ی انتشار موج به سمت بی‏نهایت، مرز مدل را با بهره گیری از مرز‏های انتقال سازگار یا از روش عددی اجزای مرزی مدل‏سازی می‏گردد. روش حل دقیق همان‏گونه ‏که انتظار می‏رود، نیازمند یک تئوری فرمول‏بندی شده‏ی قوی می‏باشد، به‏همین‏خاطر هزینه‏ی محاسباتی حتی برای انجام یک‏بار واکاوی زیاد خواهد بود و در نتیجه روش، قابل کاربرد برای بعضی از مسائل مهم و حیاتی می‏باشد و نمی‏توان از این روش در کار‏های روزمره‏ی مهندسی بهره گیری نمود. اغلب مهندسین تمایلی برای انجام محاسبات پیچیده و زمان‏بر ندارند و همیشه کوشش در تفسیر نتایج به‏دست آمده از مدل‏های گوناگون هستند که با چنین حالتی نمی‏توان مدل‏های زیادی را مورد ارزیابی قرار داد. در اکثر پروژه‏های رایج بهره گیری از مدل‏های فیزیکی برای ارائه‏ی خاک نامحدود پیشنهاد می‏گردد که در این پژوهش نیز از این مدل‏ها برای پیش‏برد اهداف بهره گیری شده می باشد.
رویکرد اساسی در مدل‏های مخروطی بر مبنای تئوری مقاومت مصالح بنا شده می باشد که در این مدل، محیط خاک توسط یک مخروط ناقص[3] مدل می‏گردد [1]. تنها تقریب به ‏کار ‏رفته در این روش، محدود‏ کردن محیط سه‏بعدی خاک به داخل یک مخروط ناقص می باشد که به‏کار بردن چنین تقریبی در مسائل ژئوتکنیک معمول می‏باشد. علت انتخاب شکل مخروطی، کاهش تنش‏های ناشی از اعمال بار با افزایش عمق می‏باشد. در اثر اعمال بار، تنش‏هایی در محیط خاک به وجود می‏آید که با افزایش عمق در سطح وسیع‏تری پخش می‏گردد؛ اما با فاصله گرفتن از محور اعمال بار دامنه آن‏ها کاهش می‏یابد.
شکل ‏1‑1: انتشار امواج در مخروط [2]
بعضی از مزایای این مدل‏ها در ادامه به اختصار ذکر گردیده‏اند:

  • سادگی مفاهیم، وجود درک فیزیکی و تبعیت از قوانین انتشار امواج
  • قابلیت تعمیم روش به حالت‏های کلی نظیر فونداسیون مدفون در خاک لایه‏ای و تطابق مناسب با شرایط خاص مسئله مانند هم‏گرایی دو‏جانبه برای فونداسیون سطحی
  • دقت مهندسی مناسب: نتایج به‏دست‏آمده از مدل‏های مخروطی کمتر از 20%± نسبت به نتایج دقیق خطا دارند. این حد خطا با در نظر داشتن این‏که پاره‏ای از عوامل ایجاد‏کننده‏ی خطا قابل حذف نمی‏باشند، برای کاربرد‏های مهندسی مناسب می‏باشد.

1-3-             ضرورت پژوهش

بهره گیری از روش‏های حل دقیق، با در نظر داشتن دقت قابل قبول آن‏ها، کاربردی برای تمامی مدل‏ها نبوده و پس به ناچار از شبیه‏سازی فیزیکی بهره گیری می‏گردد. در روش‏های عددی به‏گونه مثال روش عددی اجزاء‏ محدود، با در نظر داشتن مسئله‏ی خاک نا‏محدود، این روش نمی‏تواند کارایی قابل قبولی داشته باشد. روش‏های دیگر عددی مثل اجزاء مرزی و یا بهره گیری از المان‏های بی‏نهایت گرچه مشکل خاک نامحدود را حل‏کرده‏اند اما به علت پیچیدگی که در حل مسئله دارند، قابل کاربرد برای تمامی مسائل نیستند.
[1] Unbounded media
[2] Geocell
[3] Truncated semi-infinite cone
***ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود می باشد***

متن کامل را می توانید دانلود نمائید

زیرا فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به گونه نمونه)

اما در فایل دانلودی متن کامل پایان نامه

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود می باشد

تعداد صفحه :127

قیمت : 14700 تومان

***

دسته‌ها: عمران