پایان نامه کارشناسی ارشد

گرایش مهندسی و مدیریت ساخت

 

 

 

نفوذپذیری بتن ها تحت اعمال توام
کربناسیون و نفوذ یون کلراید

 

 

 

مردادماه 1392

 

تکه هایی از متن به عنوان نمونه :
فهرست مطالب
عنوان                                      صفحه
فصل اول 1
1- مقدمه 1
1-1- مقدمه و اهمیت موضوع 1
1-2- ضرورت انجام پژوهش 1
1-3- اهداف پایان نامه 3
1-4- چارچوب پایان نامه 3
فصل دوم 5
2- مروری بر ادبیات فنی 5
2-1- مقدمه 5
2-1-1-……………………………………………………………. ساختار بتن 7
2-1-2-………………………………………… ساختار فاز سنگدانه 7
2-1-3-………………………. ساختار سیمان خمیر هیدراته 7
2-1-4-…………….. مواد جامد در خمیر هیدراته شده 8
2-1-5- فضاهای خالی در خمیر سیمان هیدراته شده 9
2-1-6-……………………….. فضاهای بین لایه ای در C–S–H 9
2-1-7-…………………………………………………….. فضاهای مویینه 10
2-1-8-……………………………………………………….. حباب های هوا 10
2-1-9-…………………………………………………….. آب بین لایه ای 11
2-1-10-……………………………………………………………………. مقاومت 11
2-2- نفوذ یون کلراید 13
2-2-1- مکانیزمهای انتقال یون کلرید و عوامل مؤثر بر آن 14
2-3- کربناسیون 17
2-3-1-… فرآیند شیمیایی- فیزیکی کربناتاسیون 18
2-3-2- عوامل موثربر فرآیند کربناتاسیون بتن 18
2-3-3- تاثیر عوامل خارجی (شرایط محیطی) بر کربناتاسیون بتن 26
2-3-4- تاثیرشرایط اجرایی بر کربناتاسیون بتن 29
2-3-5-…………….. تاثیر کربناتاسیون بر خواص بتن 31
2-4- تاثیر کربناتاسیون بر یون کلرید 33
2-4-1- تاثیر کربناتاسیون بر مقیدسازی یون کلرید 33
2-4-2- پدیده توام کربناسیون و نفوذ یون کلراید 34
2-4-3-………………………………………………………… مطالعه پدیده 34
2-4-4- انواع مدل های تاثیر توامان کربناسیون و نفوذ یون کلراید 38
2-4-4-4-……………………………………… مدل song و همکاران 40
2-4-5- رفتار کربناسیون و نفوذ کلراید به گونه همزمان 41
فصل سوم 43
3- مصالح، روش های ساخت و آزمایش ها 43
3-1- مقدمه 43
3-2- دوده سیلیس 43
3-2-1-…………………………………. مواردمصرف دوده سیلیس 44
3-2-2-…………….. اثر واکنش پوزولانی دوده سیلیس 44
3-2-3-……………….. اندازه حرارت زایی دوده سیلیس 44
3-3- مشخصات مصالح مصرفی 45
3-3-1-………………………………………………………………………. سیمان 45
3-3-2-…………………………………………………………………. سنگدانه 45
3-3-3-……………………………………………………………………………… آب 46
3-3-4-………………………………………………… فوق روان کننده 46
3-4- ساخت و عملآوری آزمونههای بتنی 47
3-4-1-………………….. طرح اختلاط نمونه آزمایشگاهی 47
3-4-2-………………………………………………………………. ساخت بتن 51
3-5- آزمایش های فیزیکی 55
3-5-1-……………….. آزمایشهای تعیین نفوذ کلراید 55
3-5-2- آزمایشهای خواص مکانیکی و نفوذ‌پذیری بتن 56
3-6- آزمایشهای صورت گرفته در آزمایشگاه 56
3-6-1- آزمایش تسریعشده نفوذ یون کلرید در بتن(RCPT) 56
3-6-2- آزمایش مقاومت الکتریکی سطحی به روش ونر 59
3-6-3-…………………………………………………….. مقاومت فشاری 61
3-4-6-…………………………………. آزمایش جذب آب موئینه 62
3-6-5-………………………………. تعیین عمق کربناتاسیون 62
3-6-6-……………….. تعیین اندازه نفوذ یون کلراید 63
فصل چهارم 65
4- توسعه دستگاه 65
4-1- مقدمه 65
4-2- لوازم بهره گیری شده در ساخت دستگاه 66
4-3- هدف ساخت دستگاه 66
4-4- اجزاء دستگاه 68
4-4-1-……………………………………………… شمای کلی دستگاه 68
4-4-2-…………………………………………… طراحی مدار فرمان 76
4-4-3-……………………………………… رگولاتور و فشار شکن 77
4-4-4- پیچ های کنترل کننده سطح آب توسط فلوتر 78
4-4-5-……………………………… صافی – پمپ آب – یکطرفه 79
4-4-6-…………… غلظت سنج، رطوبت سنج و دما سنج 81
4-4-7-…………………………………………… دستگاه رطوبت گیر 83
4-5- چگونگی کار با دستگاه 83
فصل پنجم 95
5- نتایج آزمایشها و تجزیه و تحلیل آن ها 95
5-1- مقدمه 95
5-2- مقاومت فشاری نمونهها 95
5-3- آزمایش تسریعشده نفوذ یون کلرید در بتن (RCPT) 96
5-4- آزمایش مقاومت الکتریکی سطحی به روش ونر 97
5-5- آزمایش جذب آب موئینه 98
5-5-1-………………………………. تعیین عمق کربناتاسیون 99
5-6- تعیین اندازه نفوذ یون کلراید 100
5-7- مقایسه نتایج آزمایشها 101
5-7-1- مطالعه اثر کربناسیون و نفوذ یون کلراید در مقاومت فشاری بتن 101
5-7-2-…………………………………………… مطالعه جذب موئینه 106
5-7-3-………………………………. مطالعه مقاومت الکتریکی 108
5-7-4- مطالعه آزمایش تسریع شده نفوذ یون کلراید 110
5-7-5-……………………………………. مطالعه عمق کربناسیون 111
5-7-6-………………………………. مطالعه نفوذ یون کلراید 113
5-7-7-………………………… مطالعه در اندازه نانو TEM 114
5-7-8- مطالعه روابط بین مشخصات مکانیکی و فیزیکی بتن ها 117
فصل ششم 119
6- نتیجه گیری و پیشنهادات 119
6-1- نتایج 119
6-2- پیشنهادات 122
7- فهرست مراجع 123
پیوست 128
8- دستآورد ها و تقدیر و تشکر 128
8-1- دستاوردهای پایان نامه 128
8-2- تقدیر و تشکر 130
 
فهرست اشکال
عنوان                                               صفحه
شکل ‏2‑1 محدوده های ابعاد قسمت های جامد و فضاهای خالی در خمیر سیمان هیدراته شده 9
شکل ‏2‑2 انواع آب های موجود در ساختار سیلیکات کلسیم هیدراته شده [5]. 11
شکل ‏2‑3 ترتیب مقاومت در برابر کربناتاسیون برای انواع سیمانها ]43[ 20
شکل ‏2‑4 اثر چگالی بتن بر عمق کربناتاسیون ]43[. 22
شکل ‏2‑5 سهولت در تشخیص جبهه کربناتاسیون با افزایش نسبت آب به مواد سیمانی 23
شکل ‏2‑6 تاثیر اندازه ماسه در بتن بر کربناتاسیون ]43[ 24
شکل ‏2‑7 تاثیر غلظت ماسه در ملات بر ضریب نفوذپذیری دیاکسید کربن در بتن ]23[. 25
شکل ‏2‑8 تاثیر جایگزینی 5و10و15 درصد دوده سیلیس بجای سنگدانه (SFA) و10درصد دوده سیلیس بجای سیمان (SFC) بر اندازه CH ]24[ 26
شکل ‏2‑9 طریقه روبه رشد غلظت دیاکسیدکربن در جو ]49[ 27
شکل ‏2‑10 تاثیر فاصله نمونههای بتنی از ساحل بر کربناتاسیون ]51[ 29
شکل ‏2‑11 تاثیر اندازه تراکم بتن بر عمق کربناتاسیون بتن ]19[. 31
شکل ‏2‑12 الگوریتم کلی نرم‌افزار CONDOUR 39
شکل ‏2‑13 شمای کلی مطالعه دوام بتن تحت اثر نفوذ گاز و گرما به بتن 41
شکل ‏2‑14رفتار توامان کربناسیون و نفوذ یون کلراید 42
شکل ‏3‑1نمودار دانه بندی سنگدانه 46
شکل ‏3‑2 دستگاه میکسر – مخلوط کننده سنگدانه و سیمان 52
شکل ‏3‑3 ساخت لجن دوده سیلیس 53
شکل ‏3‑4 مخلوط کردن آب و هم زدن لجن 53
شکل ‏3‑5 مخلوط کردن تدریجی لجن دوده سیلیس 53
شکل ‏3‑6 اندازهگیری اسلامپ 54
شکل ‏3‑7 مخزن آب – جهت نگهداری بتن تا 90 روز 55
شکل ‏3‑8 دسیکاتور و چگونگی آمادهسازی نمونهها جهت آزمایش RCPT 57
شکل ‏3‑9 تصویر شماتیک دستگاه RCPT 58
شکل ‏3‑10 دستگاه و محفظههای آزمایش RCPT 58
شکل ‏3‑11 نمایی از شکل شماتیک دستگاه و مراحل انجام آزمایش دستگاه سنجش مقاومت الکتریکی 60
شکل ‏3‑12 اندازه تاثیر ابعاد نمونه بر مقادیر ضریب صحیح مقاومت الکتریکی ویژه 61
شکل ‏3‑13 نمایی از مراحل برش نمونه ها 62
شکل ‏3‑14 نمایی از مراحل مختلف آزمایش تعیین عمق کربناتاسیون و تعیین PH اعماق بتن 63
شکل ‏3‑15 محلول نیترات نقره 63
شکل ‏3‑16 نمایی از مراحل مختلف آزمایش تعیین اندازه نفوذ کلراید 64
شکل ‏4‑1 دستگاه ساخته شده نگهداری بتن در چرخه همزمان کربناسیون و انتشار یون کلرید 69
شکل ‏4‑2 شیر برقی مربوط به آب 70
شکل ‏4‑3 شیر برقی مربوط به گاز 70
شکل ‏4‑4 لوله ارتباطی آب به قطر یک اینچ 71
شکل ‏4‑5 لوله ارتباطی گاز به قطر دو اینچ 71
شکل ‏4‑6 اتصال لوله های دستگاه با بهره گیری از دستگاه اتو 72
شکل ‏4‑7 مراحل تکمیل لوله کشی دستگاه 72
شکل ‏4‑8 آب بندی لوله های ارتباطی از داخل مخازن 72
شکل ‏4‑9 شیر تخلیه هوای مخازن 73
شکل ‏4‑12 تابلو برق و فرمان 73
شکل ‏4‑11 لوازم داخلی تابلو برق 75
شکل ‏4‑12 برنامه نویسی PLC 77
شکل ‏4‑13 قطعه PLC بهره گیری شده در این دستگاه – شرکت FATEK کره ای 77
شکل ‏4‑14 فشار شکن و کپسول گاز دی اکسید کربن 78
شکل ‏4‑17 پیچ های فلوتر 78
شکل ‏4‑16 پمپ آب و صافی ها 79
شکل ‏4‑17 صافی و یکطرفه 79
شکل ‏4‑18 پمپ آب با قدرت بالاتر 80
شکل ‏4‑19 ترانسمیتر کمیت های محیطی با پورت سریالMod Bus TM-1280 تولید داخلی – شرکت تیکا 81
شکل ‏4‑20 سنسور TM-1280 تولید داخلی – شرکت تیکا 81
شکل ‏4‑21 شمای داخلی سنسور 81
شکل ‏4‑22 مشخصات فنی سنسور 82
شکل ‏4‑23 اتصالات و ترمینال های سنسور 82
شکل ‏4‑24 دستگاه رطوبت گیر 83
شکل ‏4‑25 کپسول گاز و نکات ایمنی 84
شکل ‏4‑26 نکات ایمنی محیطی 84
شکل ‏4‑27 مرحله اول کار با دستگاه 84
شکل ‏4‑28 مرحله دوم کار با دستگاه – ورود رمز 84
شکل ‏4‑29 مرحله سوم کار با دستگاه – ورود به تنظیمات 85
شکل ‏4‑30 مرحله چهارم کار با دستگاه – تنظیمات جزر و مد و شیر برقی مربوط به آب 85
شکل ‏4‑31 مرحله پنجم کار با دستگاه – تنظیمات دستگاه رطوبت گیر 85
شکل ‏4‑32 روشن بودن رطوبت گیر 86
شکل ‏4‑33 مرحله ششم کار با دستگاه – تنظیمات شیر برقی مربوط به گاز 86
شکل ‏4‑34 مرحله هفتم کار با دستگاه – شروع به کار دستگاه 87
شکل ‏4‑35 علامت نشانگر روشن بودن شیر برقی مربوط به گاز 87
شکل ‏4‑36 باز کردن شیر کپسول گاز 88
شکل ‏4‑37 تنظیم فشار گاز دی اکسید کربن 88
شکل ‏4‑38 هواگیری مخازن 89
شکل ‏4‑39 صفحه اصلی HMI 89
شکل ‏4‑40 نمودار افزایش یا کاهش گاز دی اکسید کربن 90
شکل ‏4‑41 اندازه افزایش یا کاهش دما 90
شکل ‏4‑42 نمودار افزایش یا کاهش رطوبت 91
شکل ‏4‑43 اندازه رطوبت قبل از شروع به کار کردن دستگاه رطوبت گیر 91
شکل ‏4‑44 اندازه رطوبت پس از شروع به کار کردن دستگاه رطوبت گیر 91
شکل ‏4‑45 روش ذخیره اطلاعات صفحه نمایش در حافظه جانبی 92
شکل ‏4‑46 ذخیره سازی اطلاعات 92
شکل ‏4‑47 نمونه صفحه نمایش ذخیره شده. 92
شکل ‏4‑48 تنظیمات برنامه 93
شکل ‏4‑49 شمای کلی دستگاه 94
شکل ‏5‑1 نتایج آزمایش مقاومت فشاری در سن 28 روز 103
شکل ‏5‑2 نتایج آزمایش مقاومت فشاری در سن 90 روز 103
شکل ‏5‑3 S3510 105
شکل ‏5‑4 S350 105
شکل ‏5‑5 S4510 106
شکل ‏5‑6 S450 106
شکل ‏5‑7 نتایج جذب موئینه 28 روزه 107
شکل ‏5‑8 نتایج جذب موئینه 90 روزه 108
شکل ‏5‑9 نتایج آزمایش 28 روزه مقاومت الکتریکی (kHz) 109
شکل ‏5‑10 نتایج آزمایش 90 روزه مقاومت الکتریکی (kHz) 110
شکل ‏5‑11 نتایج آزمایش RCPT 28 و 90 روزه 111
شکل ‏5‑12 نتایج عمق کربناسیون 28 و 90 روزه 112
شکل ‏5‑13 S3510 112
شکل ‏5‑14 S350 113
شکل ‏5‑15 S3510کربناته شده 113
شکل ‏5‑16 نتایج نفوذ یون کلراید 28 و 90 روزه 114
شکل ‏5‑17 ریز ساختار بتن با 10 درصد دوده سیلیس S3510 شاهد 115
شکل ‏5‑18 ساختار غیر کریستالی S3510شاهد 115
شکل ‏5‑19 ریز ساختار بتن با 10 درصد دوده سیلیس S3510 کربناته 116
شکل ‏5‑20 ساختار غیر کریستالی S3510کربناته 116
شکل ‏5‑21 ارتباط شار عبوری 28 و 90 روزه با مقاومت الکتریکی بتن کربناته 117
شکل ‏5‑22 ارتباط شار عبوری 28 و 90 روزه با مقاومت الکتریکی بتن شاهد 118
شکل ‏8‑1 برگه ثبت اختراع 128
شکل ‏8‑2 پوستر جشنواره خوارزمی 129
شکل ‏8‑3 تائیدیه دانشگاه علم و صنعت ایران 130
شکل ‏8‑4 تائیدیه دانشگاه صنعتی امیرکبیر 130
فهرست جداول
عنوان                                                     صفحه
 
جدول ‏2‑1 پارامترهای موثر در نفوذ یون کلرید به بتن 17
جدول ‏2‑2 اثر نرمی بلین بر عمق کربناتاسیون بتن[38] 21
جدول ‏2‑3 طرحهای اختلاط بتن 36
جدول ‏2‑4 ترکیبات محلول 37
جدول ‏2‑5 عمق نفوذ کلراید 37
جدول ‏3‑1 ترکیبات شیمیایی دوده سیلیس و سیمان 45
جدول ‏3‑2 مشخصات سنگدانه ها در اندازه گیری های اولیه برای بدست آوردن طرح اختلاط 48
جدول ‏3‑3 طرح اختلاط نمونه های بتنی 50
جدول ‏3‑4 دسته‌بندی بتن براساس استاندارد ASTM C1202 58
جدول ‏3‑5 تبدیل نتایج آزمایش ونر به اندازه نفوذ یون کلرید 61
جدول ‏5‑1 نتایج آزمایش مقاومت فشاری 7 روزه برای نمونه های شاهد (kg/cm2) 95
جدول ‏5‑2 نتایح آزمایش مقاومت فشاری نمونهها (kg/cm2) 96
جدول ‏5‑3 نتایح آزمایش RCPT (کولومب) 97
جدول ‏5‑4 نتایح آزمایش مقاومت الکتریکی (kHz) 98
جدول ‏5‑5 نتایح آزمایش جذب موئینه (درصد تغییر وزن نمونهها) 99
جدول ‏5‑6 نتایج عمق کربناسیون (میلیمتر) 100
جدول ‏5‑7 نتایج نفوذ یون کلراید 101
فصل اول

1-          مقدمه

1-1-         مقدمه و اهمیت موضوع

بتن، به عنوان پرمصرفترین و مهمترین مصالح ساختمانی قرن بیستم معرفی شده می باشد. مصرف سرانۀ بتن در دنیا در حدود یک تن می باشد. پس، بتن پس از آب، بیشترین ماده­ای می باشد که بشر مصرف می کند. این، در حالی می باشد که فقط حدود دو قرن از ابداع سیمان و بتن گذشته می باشد و این مصرف به سرعت در حال فزونی می­باشد [1و2].
دوام بتن مانند مسائلی می باشد که امروزه در موضوعات توسعه پایدار از اهمیت بالایی برخوردار بوده و عمر سازه های شهری را تحت الشعاع خود قرار می دهد و در آینده ای نزدیک از مهمترین شرایط پذیرش بتن های در حال ساخت، طول عمر آن خواهد بود که بایستی قبل از ساخت، آزمایش های لازم بر روی آن صورت گیرد.
با در نظر داشتن شرایط واقعی شهری همانند تهران، بتن دائما در معرض کربناسیون و گاه نفوذ یون کلرید به گونه همزمان می باشد. از یک سو آلاینده ها با ورود گازهای سمی و مخرب و از سوی دیگر فعالیت های مربوط به جلوگیری از یخ زدگی معبر شهری با ورود مواد مضر دارای کلرید و نمک، به سلامت بتن آسیب جدی وارد می کند.
تاکنون آزمایش های مختلفی برای مطالعه دوام بتن در برابر کربناسیون(نفوذ و تاثیر گازهای موجود در هوا) و در برابر نفوذ یون کلراید (نفوذ و تاثیر گازهای موجود در نمک و آب) انجام شده می باشد اما در هیچیک از آزمایش ها در هیچ نقطه ای از دنیا تا، به حال تاثیر این دو عامل بسیار مخرب به گونه همزمان مطالعه نشده می باشد و از این حیث نیز این پروژه دارای ارزشی مضاعف می باشد.

1-2-         ضرورت انجام پژوهش

هم اکنون در تمامی پروژه های عمرانی بزرگ دنیا، تمامی آزمایش های دوام برای بتن انجام می گیرد که می تواند عمر پروژه را افزایش دوچندانی دهد. در راستای موردها فوق الذکر، مطالعه دوام بتن آن پروژه مهم شهری و کشوری، از لحاظ حملات کلریدی و کربناسیون، بسیار حیاتی خواهد بود و می تواند عمر پروژه را افزایش چشمگیری دهد. با انجام چنین پروژه ای عمر پروژه های شهری و کشوری افزایش چشمگیری پیدا خواهد نمود زیرا می توان قبل از انجام بتن ریزی به بهینه عمر بتن دست پیدا نمود و آن را پیش بینی نمود. با در نظر داشتن این تخمین و پیش بینی، چرخه های تعمیر و نگهداری نیز به تعویق افتاده و عمر سازه های شهری افزایش چشمگیری خواهد پیدا نمود و این امر صرفه جویی ارزی بسیار بالایی را به ارمغان خواهد داشت.
برای سنجش چنین مورد هایی، ساخت دستگاهی که بتواند علاوه بر شبیه سازی حملات کلریدی، کربناسیون را نیز توامان اعمال کند، ضروری می نماید. تا کنون در مطالعه های آزمایشگاهی عوامل مخرب کربناسیون و نفوذ یون کلرید ، به گونه جداگانه انجام می شده می باشد و نتایج واقعی بدست نمی آمده می باشد و متعاقب آن، نتایج حاصل از مطالعه دوام نمونه های بتنی از واقعیت به دور بوده می باشد زیرا در حالت طبیعی و در محیط هایی که بتن ریزی انجام می گردد، گاز CO2 ناشی از دود کارخانه ها و اتومبیل ها و نیز یون های مضر کلرید ناشی از آب باران و نمک پاشی سطح معابر شهری هست.
هدف بهره گیری از این دستگاه آن می باشد که با بکارگیری آن در محیط های آزمایشگاهی، نگهداری نمونه های بتنی در شرایطی انجام گیرد که بتواند تحت کربناسیون(نفوذ و تاثیر گازهای موجود در هوا) و نیز نفوذ یون کلرید(نفوذ و تاثیر گازهای موجود در نمک و آب) به گونه همزمان قرار گرفته و بتواند جوابگوی شرایط واقعی محیطی که بتن در آن قرار می گیرد، باشد و نتایج آزمایش های صورت گرفته بر روی بتن به واقعیت نزدیک تر گردد. ضمنا در کارخانه ها و کارگاه های بتن سازی که بحث کنترل دوام بتن بسیار مهم می باشد، و نیز در پروژه های پل سازی، اعم از پل های اتومبیل رو و پل های راه آهن و نیز در بندرسازی، می توان از این دستگاه که قابل حمل می باشد بهره گیری نمود تا از نتایج آزمایشات کاملا اطمینان حاصل نمود. در صورت دانستن نتایج دقیق، شاهدکاهش هزینه های تعمیر و نگهداری خواهیم بود زیرا با تغییر در طرح اختلاط بتن، عمر بتن افزایش پیدا خواهد نمود. بهتر می باشد از این دستگاه برای مطالعه دوام بتن هایی که در پروژه های مناطق جنوبی کشورمان تولید می گردد، که خرابی ناشی از کربناسیون و حمله یون های کلریدی، بالاست بهره گیری گردد تا بتوان به نتایج دقیق تری در آزمایشات نمونه های بتنی دست پیدا نمود و بدین وسیله طرح اختلاط بتن بهبود چشمگیری پیدا کرده و عمر سازه های بتنی افزایش قابل ملاحظه ای یابد زیرا بتن جدید حاصل از آزمایشاتی که به شرایط واقعی نزدیک تر باشد، عمر بیشتری خواهد داشت.

این مطلب رو هم توصیه می کنم بخونین:   پایان نامه ارشد: تحلیل عددی جریان در نزدیکی رمپ هواده سرریز تونلی

1-3-         اهداف پایان­ نامه

در این پایان نامه مطالعه کربناسیون و نفوذ یون کلرید به گونه همزمان بر روی بتن های با نسبت آب به سیمان مختلف و همچنین بتن با دوده سیلیس و بتن خودتراکم صورت خواهد گرفت و سپس به مدلسازی و ارائه مدلی که بتواند جوابگوی شرایط واقعی محیطی که بتن در آن قرار می گیرد، پرداخته خواهد گردید. ضمنا برای انجام آزمایش ها، دستگاهی که بتواند شبیه سازی دقیق و کاملی از شرایط کربناسیون و حمله یون کلریدی را انجام دهد، ساخته خواهد گردید تا بتوان تاثیر همزمان این دو عامل مخرب بتن را سنجید.

1-4-         چارچوب پایان نامه

پایان­نامه حاضر مشتمل بر شش فصل می­باشد، که کوشش شده مطالب مورد نیاز پایان­نامه به صورت موجز با رعایت حفظ مفهوم به ترتیب اهمیت آورده گردد.
فصل اول “مقدمه”
در این فصل مقدمه­ای در مورد کلیات و اهداف پایان­نامه آورده شده و لزوم انجام پایان­نامه ذکر گردیده می باشد.
فصل دوم “مروری بر ادبیات فنی”
در این فصل به اختصار در مورد شناخت پدیده کربناسیون، نفوذ یون کلراید و اعمال توامان این دو پدیده مطالعه شده می باشد.
فصل سوم “مواد و مصالح و روش های آزمایش”
در این فصل در مورد مصالح بهره گیری شده در پژوهش حاضر بحث شده می باشد و روش های آزمایشی که بتن ها با آن آزمایش شده اند به گونه کامل مطالعه شده می باشد.
فصل چهارم “دستگاه نگهداری در بتن در چرخه همزمان نفوذ یون کلراید و کربناسیون”
در این بخش به گونه کامل چگونگی ساخت دستگاه ، ایده اولیه و تمام جوانب آن تبیین داده شده می باشد. ضمنا تمام مراحل بهره گیری از دستگاه به صورت کامل تبیین داده شده می باشد.
فصل پنجم “نتایج آزمایش ها و تجزیه و تحلیل آن ها “
در این فصل پس از ارائه نتایج تمام آزمایش های صورت گرفته بر بتن های نگهداری شده در محیط استاندارد، آب نمک، چرخه همزمان نفوذ یون کلراید و کربناسیون و تحت اعمال کربناسیون به تنهایی، تمامی نتایج تحلیل و مطالعه شده می باشد.
فصل ششم “نتیجه گیری و پیشنهاد
در این فصل کوشش شده نتایج حاصل از مطالعه­ها و ارزیابی­های صورت گرفته به صورت اختصار آورده شده و به سؤالات مطرح شده در قسمت اهداف پایان­نامه پاسخ داده گردد و در نهایت پیشنهاد­هایی برای ادامه پژوهش در آینده ارائه گردد.
فصل دوم

2-          مروری بر ادبیات فنی

2-1-         مقدمه

در این فصل به مطالعه و مرور تحقیقات انجام شده در زمینه نفوذ یون کلراید، اعمال کربناسیون و اعمال توامان نفوذ یون کلراید و کربناسیون می پردازیم. همانطور که مستحضرید، بتن پر مصرف ترین مصالح ساختمانی می باشد. این ماده معمولا از مخلوط کردن سیمان پرتلند، ماسه، سنگ شکسته و آب تشکیل می گردد. در اغلب کشورهای جهان نسبت مصرف بتن به فولاد، از 10 به 1 نیز فراتر رفته می باشد. اندازه مصرف امروز بتن در جهان بالغ بر 5/5 میلیون تن در سال می باشد.
علت های زیادی برای این پر مصرف ترین مصالح مهندسی ذکر گردیده می باشد:
بتن مقاومت بالایی پیش روی آب دارد. برخلاف چوب و فولاد معمولی، توانایی بتن برای مقاومت پیش روی آب و عدم ایجاد خرابی در آن، از مصالحی ایده آل برای کنترل و ذخیره کردن و حمل و انتقال آب ساخته می باشد.
سهولت شکل دادن به آن برای ساخت اجزای مختلف سازه که به راحتی به درون قالب ها با شکل های مختلف ریخته می گردد. [1].
سیمان پرتلند و سنگدانه به آسانی قابل دسترسی و ارزان می باشند.
بتن مسلح که در آن از فولاد و بتن بهره گیری می گردد، طوری طراحی می گردد که دو مصالح بتن و فولاد تواما برای تحمل نیروهای وارد به قطعه مقاومت کنند.
بتن پیش تنیده، که در آن با کشیدن کابل های پیش تنیدگی و آرماتورها در بتن فشاری اولیه ایجاد می کنند، برای تحمل تنش های کششی بیشتر در حین بارگذاری قطعات، طراحی شده اند. [2].
بتن به عنوان یکی از مهمترین مصالح ساختمانی در جهان مطرح می­باشد و با در نظر داشتن اینکه کمتر از دو قرن از اختراع آن با ترکیبات امروزی می­گذرد، کماکان رفتار آن در شرایط مختلف در هاله­ای از ابهام قرار دارد. بتن علیرغم سادگی عیان آن، دارای ساختار بسیار پیچیده­ای می باشد و روابط بین ساختار ماده و مشخصات آن، که معمولاً برای درک و کنترل مواد مختلف سودمند می باشد، را نمی­توان به سادگی به کار برد. بتن شامل یک توزیع غیرهمگن از تعداد زیادی اجزاء جامد می باشد و نیز دارای منافذی می باشد که دارای شکل­ها و اندازه­های گوناگونی می­باشند. تمامی این منافذ و یا بخشی از آنها از محلول­های قلیایی پر شده­اند. روش­های تحلیلی علم مواد و مکانیک جامدات، در مصنوعاتی که نسبتاً همگن هستند و پیچیدگی بسیار کمتری از بتن دارند به خوبی به کار برده می­گردد. مانند این مواد می­توان به فولاد، پلاستیک­ها و سرامیک­ها تصریح نمود. به نظر نمی­رسد که این روش­ها بتوانند در مورد بتن خیلی موثر واقع شوند[1]. در واقع واژه بتن (Concrete) از واژه لاتین (Concretus) به معنای “رشد کردن” اشتقاق یافته می باشد [1] و بنا بر دانش تکنولوژی بتن فرآیند هیدراتاسیون سیمان و محصولات حاصل از آن تا سال­ها پس از ساخت ادامه خواهند داشت. این امر سبب مطرح شدن بتن به عنوان یک موجود زنده می­باشد. نیاز به آب برای ادامه حیات و بارورتر شدن آن، تاثیرپذیری از شرایط محیطی مانند دما، رطوبت و یون­های مخرب، تغییر خواص با گذشت زمان و بالاخره پیری مصالح تشکیل دهنده آن مؤید زنده بودن این ماده می­باشد [2].
در مقایسه با سایر مواد، ساختار بتن یک مشخصه ایستا و ثابت از این ماده نیست. دلیل این امر نیز آن می باشد که دو جزء از سه جزء کاملاً متمایز در ساختار بتن، یعنی خمیر سیمان و ناحیه انتقال بین خمیر و سنگدانه با گذشت زمان و به گونه مستمر تغییر می­کنند، از طرفی دیگر بر خلاف سایر مصالح، که به صورت یک “کالای آماده برای مصرف” ارائه می­شوند، بتن ماده­­ای می باشد که اغلب می­بایستی درست قبل از مصرف در محل کارگاه یا نزدیک آن ساخته گردد. از این رو اگر در دو مرحله بتنی با مشخصات یکسان در دو کارگاه متفاوت ساخته گردد، نمی­توان از رفتار یکسان آنها مطمئن بود.
به گونه کلی، به هر ماده یا محصولی که از یک ماده چسبنده با خاصیت سیمانی شدن، تشکیل شده باشد، بتن اطلاق می­گردد. تاریخ ساخت و کاربرد بتن به عنوان مصالح ساختمانی از قدمت چند هزار ساله برخوردار می­باشد و سازه­های ساخته شده از این جنس در ایران و جهان گواه این امر می­باشند. با این تعریف، بتن طیف وسیعی از محصولات را شامل می­گردد اما در اینجا مقصود از بتن، ماده ساخته شده با سیمان پرتلند، آب و سنگدانه (و افزودنی) می­باشد.
ساخت بتن با سیمان پرتلند پس از پیدایش سیمان پرتلند در سال 1827 آغاز شده و در طی این دوران به یکی از پرمصرفترین مصالح در صنعت ساختمان تبدیل شده می باشد که این خود گواه پارامتر­ها و ویژگی­های منحصر بفرد آن می­باشد. مقاومت عالی بتن پیش روی آب، سهولت فرم­پذیری بتن در اشکال و اندازه­های مختلف، ارزان­تر بودن و سهولت دسترسی به مصالح تشکیل­دهنده آن تقریباً در هر نقطه از جهان، از علل متعدد این امر می­باشند. طی سالیان گذشته، نوع و کیفیت مصالح بتنی و روش­های ساخت به­گونه قابل ملاحظه­ای تغییر کرده می باشد.
اجزاء اصلی تشکیل­دهنده بتن، عبارتند از سنگدانه­، سیمان و آب. در سال­های اولیه، بهره گیری از بتن به دلیل کم بودن مقاومت کششی آن، محدودتر بود اما در اواسط قرن نوزدهم میلادی برای اولین بار از تسلیح بتن بهره گیری گردید و به این ترتیب با لاغر شدن اعضای بتنی، امکان طرح دهانه­های بزرگتر و بهره گیری از تنش­های طراحی بالاتر، به عنوان یکی از مهم­ترین پیشرفت­ها در زمینه بهره گیری از بتن فراهم گردید. با در نظر داشتن اینکه مواد اولیه برای ساخت بتن در همه جای دنیا در دسترس می باشد، بهره گیری از آن در سطح دنیا از همان آغاز رو به گسترش گذاشت.
بتن از سه فاز مختلف تشکیل شده می باشد. این فازها عبارتند از: سنگدانه، خمیر و ناحیه انتقال. مشخصات مکانیکی و دوام بتن به هر سه فاز ذکر گردیده وابسته می باشد. پس برای ارزیابی و تعیین مشخصات بتن بایستی هر سه فاز مطالعه شوند. این مطالعه­ها بایستی از دو دیدگاه صورت گیرد. دیدگاه اول، مطالعه هر یک از سه فاز به صورت مستقل و دیدگاه دوم، مطالعه اثر این سه فاز بر یکدیگر.

2-1-1-         ساختار بتن

2-1-2-         ساختار فاز سنگدانه

در واقع سنگدانه تعیین کننده وزن واحد حجم، مدول (الاستیسیته) و پایداری ابعادی بتن می باشد. این خواص بتن تا حدود زیادی بستگی به وزن مخصوص ظاهری و مقاومت سنگدانه ها دارد آن هم به نوبه خود به خواص فیزیکی سنگدانه بیشتر از خواص شیمیایی آن وابسته می باشد. [2].
علاوه به تخلخل، شکل و بافت سنگدانه های درشت نیز در خواص بتن تاثیر دارند .
وجود سنگدانه های با ابعاد بزرگتر و همچنین نسبت زیادی سنگدانه های مسطح و طویل در بتن باعث به وجود آوردن لایه نازک آب در فصل مشترک خمیر و سنگدانه شده و این لایه در ضعیف کردن پیوستگی خمیر و سنگدانه (در ناحیه انتقال) بسیار موثر می باشد [3].

2-1-3-         ساختار سیمان خمیر هیدراته

سیمان پرتلند غیرهیدراته پودر خاکستری رنگی می باشد که از ذرات زاویه داری و در اندازه های بین 1 تا 50 میکرون تشکیل شده می باشد. المانهای اصلی تشکیل دهنده سیمان عبارتند از: کلسیم، سیلیسیوم، آلومینیوم، آهن، منیزیم، سدیم، پتاسیم و گوگرد. این المانها در طبیعت خالص نیستند و به صورت اکسید وجود دارند. سیمان از آسیاب کردن کلینکر با مقدار کمی سولفات کلسیم به دست می آید. ترکیبات اصلی کلینکر سیمان شامل C3S، C2S، C3A،C4AF می باشد که در دمای 14700 درجه سانتی گراد با ذوب شدن و ترکیب شدن این اکسید ها حاصل می شوند.
هر یک از خواص سیمان تحت تاثیر یکی از اکسیدهای مرکب می باشد، اکسیدهای C3S، C2S حدود 75 درصد سیمان را تشکیل می دهند و ویژگی های مفید سیمان از قبیل چسبندگی مقاومت و ثبات حجمی را این دو اکسید می سازند.
واکنش سیمان با آب را هیدراتاسیون (آبگیری) می گویند. آبگیری C3S خیلی سریع می باشد اما آبگیری C2S کند می باشد. در نتیجه C3S باعث ایجاد مقاومت کوتاه مدت و C2S باعث ایجاد مقاومت بلند مدت می گردد. حرارت ایجاد شده در زمان آبگیری ناشی از واکنش سریع C3S با آب می باشد. C3A اکسید ناپایداری می باشد که شدیدا تحت تاثیر حملات شیمیایی به خصوص حمله سولفات ها قرار می گیرد. از واکنش C3A با سولفاتها ترکیبی به نام اترنژیت حاصل می گردد که در مجاورت آب افزایش حجم می دهد و به این ترتیب باعث ترک خوردن و خرد شدن بتن می گردد. C3A در مقاومت سیمان تأثیر کمی دارد در عوض باعث گیرش آنی سیمان می گردد. گیرش آنی به دلیل واکنش سریع C3A با آب رخ می دهد. واکنش C3A خالص با آب بسیار شدید می باشد و به سفت شدن فوری خمیر که به گیرش آنی معروف می باشد منتهی می گردد. برای جلوگیری از این امر در هنگام تولید سیمان سنگ گچ (H2O2، CaSO4) به کلینکر سیمان افزوده می گردد. گیرش آنی برگشت ناپذیر می باشد. C4AF در تولید سیمان به شکل کاتالیزور حرارتی اقدام می کند. اگر مقدار C4AF در سیمان کم گردد حرارت لازم برای تولید کلینکر سیمان افزایش می یابد و باعث غیراقتصادی شدن تولید سیمان می گردد.
هنگامی که پودر سیمان در آب ریخته می گردد سولفات کلسیم و ترکیبات دمای بالای کلسیم تمایل به حل شدن پید کرده و مایع جدید سریعا از ذرات یونی مختلف اشباع می گردد. در نتیجه تشکیل ترکیبات حاصل از کلسیم سولفات، آلومینات و یون های هیدروکسیل چند دقیقه پس از هیدراتاسیون سیمان آغاز بلورهای سوزنی شکل سولفوآلومینات کلسیم هیدراته شده، موسوم به اترینگات ظاهر می گردند. پس از چند ساعت بلورهای بزرگ منشوری شکل هیدروکسید کلسیم و بلورهای کوچک الیافی شکل سیلیکات کسلیم هیدراته شده، فضاهای خالی خمیر را که قبلا توسط آب و ذرات سیمان اشغال شده بود پر می کنند. بعد از چند روز بسته به اندازه نسبت اکسید آلومینیوم به سولفات سیمان پرتلند، اترینگیات ناپایدار شده و به مونوسولفات هیدراته شده به شکل صفحات شش وجهی در می آید. صفحات شش وجهی شکل همچنان متعلق به هیدروکسید کلسیم هیدراته شده می باشد که در خمیر هیدراته شده کم سولفات یا در سیمان های با C3A زیاد تشکیل می گردد [4].

2-1-4-         مواد جامد در خمیر هیدراته شده

1- هیدروکسید کلسیم
2- سولفوآلومینات کلسیم
3- دانه های کلینکر هیدراته نشده
4- سیلیکات کلسیم هیدراته
فاز سیلیکات کلسیم هیدراته که مختصرا با C–S–H نشان داده می گردد، حدود 50 تا 60 درصد حجم مواد جامد خمیر سیمان کاملا هیدراته شده را تشکیل داده و پس مهمترین بخش مواد جامد خمیر در تعیین خواص آن می باشد. علت نشان دادن این ترکیب به شکل C–S–H این می باشد که نسبت به ترکیبات آن کاملا مشخص نشده و در آن نسبت C به S بین 5/1 تا 2 و نیز آب شیمیایی آن بسیار متغیر می باشد. شکل ذرات C–S–H نیز از کریستال های ضعیف الیافی شکل تا شبکه های منسجم تغییر می کند. به علت شکل کلوییدی و تمایل به خوشه ای شدن آن بلورهای C–S–H تنها با دستگاه میکروسکوپ الکترونی قابل شناسایی دقیق می باشد. ساختار بلورین داخلی C–S–H نیز هنوز معلوم نشده می باشد. قبلا تصور می گردید که بلورهای آن شبیه ماده معدنی طبیعی توبرمورایت می باشد و از این رو گاه به C–S–H ژل توبرمورایتی نیز گفته می گردید. [5]. با بهره گیری از دستگاه های مختلف اندازه گیری مساحت سطح C–S–H در حدود 100 تا 700 متر مربع بر گرم پیشنهاد شده می باشد. مقاومت ماده اساسا به نیروهای واندروالس، اندازه حرفات ژلی یا فاصله بین قسمت جامد که در حدود 18 آنگستروم می باشد نسبت داده می گردد.

2-1-5-         فضاهای خالی در خمیر سیمان هیدراته شده

انواع مختلف فضاهای خالی در خمیر سیمان ایجاد می گردد که در خواص آن تاثیر به سزایی دارند (شکل ‏2‑1)
شکل ‏2‑1 محدوده های ابعاد قسمت های جامد و فضاهای خالی در خمیر سیمان هیدراته شده

2-1-6-         فضاهای بین لایه ای در C–S–H

پاورز عرض فضاهای بین لایه ای در C–S–H را حدود 18 آنگستروم اظهار کرده و معتقد می باشد که این فضاهای خالی 28 درصد قسمت جامد C–S–H می باشد. به هر حال فلدمن و سردا این فضا را بین 5 تا 25 آنگستروم پیشنهاد می کنند. با این تفاصیل این فضاهای متخلخل آنقدر کوچکند که نمی توانند تاثیری در مقاومت و تراوایی خمیر سیمان سخت شده داشته باشند. آب درون این فضاهای کوچک می تواند توسط پیوند هیدروژنی نگه داشته گردد و خروج آن تحت شرایطی معین می تواند سبب ایجاد جمع شدگی ناشی از خشک شدن و خزش خمیر گردد.
***ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود می باشد***

متن کامل را می توانید دانلود نمائید

زیرا فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به گونه نمونه)

اما در فایل دانلودی متن کامل پایان نامه

 با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود می باشد

تعداد صفحه :149

قیمت : 14700 تومان

***

—-

دسته‌ها: عمران